-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 658cc3c
Showing
18 changed files
with
2,236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
%模板 | ||
\documentclass[12pt,a4paper]{book} | ||
|
||
\usepackage{ctex} | ||
\usepackage{graphicx}%插入图片的宏包 | ||
\usepackage{makeidx} | ||
\usepackage{amsmath} | ||
\usepackage{amsfonts} | ||
\usepackage{amssymb}%数学符号宏包 | ||
\usepackage{textcomp}%树叶图案在这个包里 | ||
\usepackage{bbding}%很多漂亮的图案 | ||
\usepackage[dvipsnames, svgnames, x11names]{xcolor}%导入了所有颜色配置文件的宏包 | ||
\usepackage{enumerate}%使用改宏包优化罗列环境 | ||
\usepackage{CJKfntef} | ||
\usepackage{ulem}%下划线宏包用法和样式如下: | ||
%\uuline{双下划线} | ||
%\uwave{波浪线} | ||
%\sout{中间删除线} | ||
%\xout{斜删除线} | ||
%\dashuline{虚线} | ||
%\dotuline{加点} | ||
\usepackage{geometry}%页边距调整 | ||
\geometry{left=1.5cm,right=1.5cm,bottom=1.8cm,top=1.8cm} | ||
\usepackage{titletoc}%目录页的宏包 | ||
\usepackage{titlesec}%改变章节或标题的样式的宏包 | ||
\usepackage[bookmarks=true,colorlinks,linkcolor=black]{hyperref} | ||
|
||
%各类设置 | ||
%章节或标题的样式 | ||
\titleformat{\section}%设置section的样式 | ||
{\raggedright\Large\bfseries}{\includegraphics[width=0.03\textwidth]{sigma.eps}\thesection\hspace*{0.6cm}}{0pt}{} | ||
\titlespacing*{\subsection}{3em}{3em}{2em}[1em] | ||
\titleformat{\subsection}%设置section的样式 | ||
{\raggedright\large\bfseries}{\hspace*{1cm}\thesubsection\hspace*{0.6cm}}{0pt}{} | ||
\titlespacing*{\subsection}{3em}{2em}{2em}[1em] | ||
%格式如下:\titlespacing*{章节名称}{左间距}{(前)行间距}{(后)行间距}[右间距(一般都没用,填0.1em即可,但不能不填)] | ||
\titlespacing*{\subsubsection}{2em}{1em}{1em}[1em] | ||
|
||
%制作索引 | ||
\makeindex | ||
|
||
%公式编号设置 | ||
\numberwithin{equation}{section} | ||
|
||
%字体设置 | ||
\setCJKmainfont[BoldFont=STZHONGS.ttf]{STZHONGS.ttf}%需要查看电脑字体查找对应字体的文件英文文件名 | ||
\setCJKfamilyfont{song}{STZHONGS.ttf} | ||
\setCJKfamilyfont{kai}{simkai.ttf}%都是用来定义字体的(此处使用电脑自带楷书) | ||
|
||
%定义区域 | ||
\definecolor{zs}{HTML}{2a7ae2}%定义某个颜色,对应颜色代号查表 | ||
\definecolor{dy}{HTML}{FF359A} | ||
\definecolor{dl}{HTML}{4B0091} | ||
\definecolor{ff}{HTML}{007500} | ||
\definecolor{bt}{HTML}{5B00AE} | ||
|
||
%定义环境 | ||
\newtheorem{method}{\hspace*{0.3cm}\color{ff}\textleaf 方法}[section] | ||
\newtheorem{defination}{\hspace*{0.3cm}\color{dy}\FiveFlowerOpen \hspace*{0.2cm}定义}[section] | ||
\newtheorem{feature}{\color{1a9850}$ \square $性质}[section] | ||
\newtheorem{inference}{\color{00ba38}$ \square $推论}[section] | ||
\newtheorem{theorem}{\hspace*{0.3cm}\color{dl} $ \square $定理}[section] | ||
\newtheorem{example}{\color{53a9ab}$ \square $例}[section] | ||
\newtheorem{proof}{证明}[chapter] | ||
|
||
%文章标题 | ||
\title{微分方程总结}\author{易鹏} | ||
|
||
%调整间距(倍数) | ||
\linespread{1.5} | ||
|
||
%标题及目录 | ||
\begin{document} | ||
\maketitle %显示标题 | ||
\newpage | ||
\pagenumbering{Roman} | ||
\setcounter{page}{0}%强行设置起始页码 | ||
\tableofcontents | ||
\thispagestyle{empty} | ||
|
||
|
||
%正文部分 | ||
\newpage | ||
\pagenumbering{arabic} | ||
\setcounter{page}{1} | ||
\chapter{微分方程} | ||
\section{微分方程的基本概念} | ||
\vspace*{0.3cm} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}一般地,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做\uuline{微分方程}\index{微分方程!微分方程},有时也简称\uuline{方程}. | ||
\end{defination} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}微分方程中所出现的未知函数的最高阶导数的阶数,叫做\uuline{微分方程的阶}\index{微分方程!微分方程的阶}.例如三阶微分方程$x^3y'''+x^2y''-4xy'=3x^2+\sin{2x}$.一般地,$n$阶微分方程的形式是 | ||
\begin{equation} | ||
F(x,y,y',\cdots ,y^{(n)})=0\label{n阶微分方程} | ||
\end{equation} | ||
其中$y^{(n)}$是必须有的,而其余项$x,y,y',\cdots ,y^{(n-1)}$可有可无. | ||
\end{defination} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}找出这样的函数,把这个函数代入微分方程\eqref{n阶微分方程}能使该方程成为恒等式.这个函数就叫做该\uuline{微分方程的解}\index{微分方程!微分方程的解}.设函数$y=\varphi(x)$在区间$I$上有$n$阶连续导数,如果在区间$I$上, | ||
$$F\left[x,\varphi(x),\varphi'(x),\cdots ,\varphi^{(n)}(x)\right]\equiv 0$$ | ||
那么函数就叫做微分方程\eqref{n阶微分方程}在区间$I$上的解. | ||
\end{defination} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同\footnote{这里所说的任意常数是相互独立的, 就是说,它们不能合并而使得任意常数的个数减少(参见本章第六节关于函数组的线性相关性)},这样的解叫做\uuline{微分方程的通解}\index{微分方程!微分方程的通解}. | ||
\end{defination} | ||
|
||
\hspace*{0.6cm}通解中含有任意常数,所以它还不能完全确定地反映某一客观事物的规律性.所以为了完全确定地反映客观事物的规律性,必须确定这些常数的值.为此要根据问题的实际情况,提出确定这些常数的条件.例如设一阶微分方程中的未知函数为$y=\varphi (x)$,通常给出的条件为$x=x_0,y=y_0$,也记为${y|}_{x=x_0}=y_0$. | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}上述给出的条件就称为\uuline{初值条件}\index{微分方程!初值条件}.确定了通解中的任意常数以后,得到的解就叫做\uuline{微分方程的特解}\index{微分方程!微分方程的特解}.求微分方程$y'=f(x ,y)$满足初值条件${y|}_{x=x_0}=y_0$的特解这样一个问题,叫做一阶微分方程的\uuline{初值问题}\index{微分方程!初值问题},记作 | ||
\begin{equation} | ||
\left\lbrace | ||
\begin{array}{l} | ||
y' = f(x,y) \\ | ||
y\left | {_{x = {x_0}} = {y_0}} \right. | ||
\end{array} | ||
\right. | ||
\label{初值问题1} | ||
\end{equation} | ||
\end{defination} | ||
|
||
\begin{defination} | ||
微分方程的解的图形是一条曲线,叫做微分方程的\uuline{积分曲线}\index{微分方程!积分曲线}.初值问题\eqref{初值问题1}的几何意义,就是求微分方程\eqref{初值问题1}的通过点$(x_0,y_0)$的那条积分曲线,二阶微分方程的初值问题 | ||
\begin{equation} | ||
\left\lbrace | ||
\begin{array}{l} | ||
y''= f(x,y,y') \\ | ||
y\left | {_{x = {x_0}} = {y_0}} \right. \\ | ||
y'\left | {_{x = {x_0}} = {y_0'}} \right. | ||
\end{array} | ||
\right. | ||
\label{初值问题2} | ||
\end{equation} | ||
的几何意义是求微分方程\eqref{初值问题2}的通过点$(x_0,y_0)$的且在该点处的切线斜率为$y_0'$的那条积分曲线. | ||
\end{defination} | ||
|
||
\section{各种微分方程的求解} | ||
\subsection{可分离变量的微分方程} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}一般地,如果一个微分方程能写成 | ||
\begin{equation} | ||
g(y)\,\mathrm{d}y=f(x)\,\mathrm{d}x | ||
\label{可分离变量的微分方程} | ||
\end{equation} | ||
的形式,就是说,能把微分方程写成一端只含$y$的函数和$\mathrm{d}y$,另一端写成只含$x$的函数和$\mathrm{d}x$的形式,那么原方程就称为\uuline{可分离变量的微分方程}\index{微分方程!可分离变量的微分方程}. | ||
\end{defination} | ||
|
||
\begin{method} | ||
\hspace*{0.3cm}方程\eqref{可分离变量的微分方程}的解法,只需要两边同时积分即可,即 | ||
\begin{equation} | ||
\int g(y)\,\mathrm{d}y=\int f(x)\,\mathrm{d}x | ||
\label{可分离变量的微分方程2} | ||
\end{equation} | ||
设$G(y)$和$F(x)$分别为$g(y)$和$f(x)$的原函数,那么 | ||
\begin{equation} | ||
G(y)=F(x)+C | ||
\label{可分离变量的微分方程3} | ||
\end{equation} | ||
\end{method} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}如果方程\eqref{可分离变量的微分方程3}表示的是隐函数$y=\varphi (x)$,那么式\eqref{可分离变量的微分方程3}是微分方程\eqref{可分离变量的微分方程}的\uuline{隐式解}\index{微分方程!隐式解}.又由于关系式\eqref{可分离变量的微分方程3}中含有任意常数,因此式\eqref{可分离变量的微分方程3}微分方程\eqref{可分离变量的微分方程}的通解,也叫做\uuline{隐式通解}\index{微分方程!隐式通解}. | ||
\end{defination} | ||
\vspace{0.3cm} | ||
|
||
\subsection{齐次方程} | ||
|
||
\begin{defination} | ||
\hspace*{0.3cm}如果一阶微分方程可以化成 | ||
|
||
\begin{equation} | ||
\frac{\mathrm{d}y}{\mathrm{d}x}=\varphi (\frac{y}{x}) | ||
\label{齐次方程1} | ||
\end{equation} | ||
|
||
的形式,那么这个微分方程就叫做\uuline{齐次方程}\index{微分方程!齐次方程}. | ||
\end{defination} | ||
|
||
\begin{method} | ||
\hspace*{0.3cm}求解齐次微分方程\eqref{齐次方程1}的方法如下:\\ | ||
第一步:换元 | ||
$$u=\frac{y}{x}$$ | ||
其中$u$是关于$x$的一个新函数,所以 | ||
$$y=ux,\frac{\mathrm{d}y}{\mathrm{d}x}=u+\frac{\mathrm{d}u}{\mathrm{d}x}x$$ | ||
第二步:代入式\eqref{齐次方程1},得 | ||
$$u+\frac{\mathrm{d}u}{\mathrm{d}x}x=\varphi (u)$$ | ||
第三步:分离变量,得到 | ||
$$\frac{1}{\varphi (u)-u}\,\mathrm{d}u=\frac{1}{x}\,\mathrm{d}x$$ | ||
第四步:两边同时积分,得到 | ||
$$\int \frac{1}{\varphi (u)-u}\,\mathrm{d}u=\ln|x|\,$$ | ||
即 | ||
$$x=\mathrm{e}^{\int \frac{1}{\varphi (u)-u}\,\mathrm{d}u}$$ | ||
\end{method} | ||
|
||
\begin{theorem} | ||
\hspace{0.3cm}齐次方程\eqref{齐次方程1}的通解为 | ||
\begin{equation} | ||
x=\mathrm{e}^{\int \frac{1}{\varphi (u)-u}\,\mathrm{d}u} | ||
\label{齐次方程的通解} | ||
\end{equation} | ||
|
||
\end{theorem} | ||
|
||
|
||
\subsection{可化为齐次的方程} | ||
\begin{method} | ||
\hspace{0.3cm}方程 | ||
\begin{equation} | ||
\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2} | ||
\label{非齐次方程} | ||
\end{equation} | ||
当$c_1=c_2=0$时方程\eqref{非齐次方程}是齐次的,否则不是齐次的.在非齐次的情形,可以用变换法和待定系数法使得其变为齐次方程.令 | ||
$$x=X+h,y=Y+k,$$ | ||
于是, | ||
$$\mathrm{d}x=\mathrm{d}X,\mathrm{d}y=\mathrm{d}Y,$$ | ||
带入方程\eqref{非齐次方程}得到 | ||
$$\frac{\mathrm{d}Y}{\mathrm{d}X}=\frac{a_1X+b_1Y+a_1h+b_1k+c_1}{a_2X+b_2Y+a_2h+b_2k+c_2}.$$ | ||
那么要使方程\eqref{非齐次方程}是齐次方程,那么需要满足方程组 | ||
$$\left\lbrace | ||
\begin{array}{l} | ||
a_1h+b_1k+c_1=0 \\ | ||
a_2h+b_2k+c_2=0 | ||
\end{array} | ||
\right.$$ | ||
如果上述方程组的系数行列式 | ||
$\left| \begin{array}{cc} | ||
a_1 & b_1 \\ | ||
a_2 & b_2 | ||
\end{array} \right| \ne 0$ | ||
,即$\displaystyle\frac{a_2}{a_1}\ne \frac{b_1}{b_2} $,那么这个方程组存在唯一的$h$和$k$使得上述方程组成立.那么,方程\eqref{非齐次方程}便化为齐次方程 | ||
$$\frac{\mathrm{d}Y}{\mathrm{d}X}=\frac{a_1X+b_1Y}{a_2X+b_2Y}.$$ | ||
求出这个齐次方程的解以后在通解中要记得将元换回来,即代入$X=x-h,Y=y-k$.\vspace*{0.2cm}\\ | ||
|
||
\hspace*{0.5cm}特别地,当$\displaystyle\frac{a_2}{a_1}= \frac{b_1}{b_2}$时,无法求出$h$和$k$.这时令$\displaystyle\frac{a_2}{a_1}= \frac{b_1}{b_2}=\lambda $,那么方程\eqref{非齐次方程}可以写为 | ||
$$\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{a_1x+b_1y+c_1}{\lambda (a_1x+b_1y)+c_2}$$ | ||
引入新变量$v=a_1x+b_1y$,那么 | ||
$$\frac{\mathrm{d}v}{\mathrm{d}x}=a_1+b_1 \, \frac{\mathrm{d}y}{\mathrm{d}x} \qquad \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{b_1}\left(\frac{\mathrm{d}v}{\mathrm{d}x}-a_1 \right) $$ | ||
代入方程\eqref{非齐次方程}得到 | ||
$$\frac{1}{b_1}\left(\frac{\mathrm{d}v}{\mathrm{d}x}-a_1 \right)=\frac{v+c_1}{\lambda v+c_2}$$ | ||
这就变成了一个可以分离变量的方程,很容易就可以求解. | ||
\end{method} | ||
|
||
\subsection{一阶线性微分方程} | ||
|
||
|
||
|
||
|
||
%打印索引————————————— | ||
\newpage | ||
\addcontentsline{toc}{chapter}{附录} | ||
\addcontentsline{toc}{section}{索引} | ||
\appendix | ||
\kaishu | ||
\printindex | ||
%——————————————— | ||
|
||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
\relax | ||
\providecommand\hyper@newdestlabel[2]{} | ||
\bbl@cs{beforestart} | ||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} | ||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined | ||
\global\let\oldcontentsline\contentsline | ||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} | ||
\global\let\oldnewlabel\newlabel | ||
\gdef\newlabel#1#2{\newlabelxx{#1}#2} | ||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} | ||
\AtEndDocument{\ifx\hyper@anchor\@undefined | ||
\let\contentsline\oldcontentsline | ||
\let\newlabel\oldnewlabel | ||
\fi} | ||
\fi} | ||
\global\let\hyper@last\relax | ||
\gdef\HyperFirstAtBeginDocument#1{#1} | ||
\providecommand*\HyPL@Entry[1]{} | ||
\HyPL@Entry{0<</S/D>>} | ||
\babel@aux{nil}{} | ||
\HyPL@Entry{2<</S/D>>} | ||
\@writefile{toc}{\contentsline {section}{\numberline {1}常用三角函数公式}{1}{section.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}积化和差公式}{1}{subsection.1.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}和差化积公式}{1}{subsection.1.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}归一化公式}{1}{subsection.1.3}\protected@file@percent } | ||
\newlabel{gyhgs}{{1.3.1}{1}{归一化公式}{equation.1.3.1}{}} | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}倍(半)角公式 \hskip 1em\relax 降(升)幂公式}{1}{subsection.1.4}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.5}万能公式}{2}{subsection.1.5}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {2}常用的佩亚诺型余项泰勒公式}{2}{section.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {3}基本求导公式}{2}{section.3}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {4}函数图形描述中涉及到的重要公式}{3}{section.4}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}常用曲率计算公式}{3}{subsection.4.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}曲线的渐近线}{3}{subsection.4.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {5}基本积分公式}{3}{section.5}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {6}基本积分方法}{4}{section.6}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}第一类换元法}{5}{subsection.6.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.1.1}三角函数之积的积分}{5}{subsubsection.6.1.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.1.2}常见的凑微分类型}{5}{subsubsection.6.1.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}有理函数的积分}{5}{subsection.6.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.2.1}部分分式}{5}{subsubsection.6.2.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.2.2}三角函数的特殊定积分}{6}{subsubsection.6.2.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {7}多元函数微分}{6}{section.7}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}偏导数}{6}{subsection.7.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.1}偏导数记法}{6}{subsubsection.7.1.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}全微分}{6}{subsection.7.2}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {8}微分方程(该部分将会采用详细的讲义样式)}{6}{section.8}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {subsection}{\numberline {8.1}微分方程的基本概念}{6}{subsection.8.1}\protected@file@percent } | ||
\@writefile{toc}{\contentsline {section}{\numberline {9}可分离变量的微分方程}{7}{section.9}\protected@file@percent } | ||
\ttl@finishall |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
This is makeindex, version 2.15 [TeX Live 2020/W32TeX] (kpathsea + Thai support). | ||
Scanning style file c:/texlive/2020/texmf-dist/makeindex/nomencl/nomencl.ist........ | ||
** Input style error (file = c:/texlive/2020/texmf-dist/makeindex/nomencl/nomencl.ist, line = 36): | ||
-- Unknown specifier lethead_prefix. | ||
** Input style error (file = c:/texlive/2020/texmf-dist/makeindex/nomencl/nomencl.ist, line = 37): | ||
-- Unknown specifier lethead_suffix. | ||
** Input style error (file = c:/texlive/2020/texmf-dist/makeindex/nomencl/nomencl.ist, line = 38): | ||
-- Unknown specifier lethead_flag. | ||
....done (12 attributes redefined, 3 ignored). | ||
Scanning input file calculus.nlo...done (0 entries accepted, 0 rejected). | ||
Nothing written in calculus.nls. | ||
Transcript written in calculus.ilg. |
Oops, something went wrong.