Tensorflow 1.12.0
implementation of ZeoGAN.
Generates energy and material shapes (in voxel format).
--dataset_path /path/to/input_shapes
--device 1 # gpu device number
--logdir /path/to/logdir # path for log, checkpoint
--z_size 1024
--voxel_size 32
--rate 0.5
--move True
--rotate True
--invert True
--energy_limit -4000 5000
--energy_scale -4000 5000
--cell_length_scale 0.0 150.0
--save_every 1000 # frequency of saving checkpoints
--batch_size 32
--bottom_size 4
--bottom_filters 256
--top_size 4
--filter_unit 32
--d_learning_rate 1e-4
--g_learning_rate 1e-4
--minibatch False
--minibatch_kernel_size 256
--minibatch_dim_per_kernel 5
--l2_loss False
--train_gen_per_disc 1
--n_critics 5
--gp_lambda 10
--feature_matching True
--in_temper 298.0
--user_desired False # non-user-desired generation
--user_range 18 22
#--restore_ckpt /path/to/checkpoint # if use pre-trained checkpoints
$ python main.py @input_example.in
In input_example.in
,
--dataset_path /path/to/input_shapes
--device 1 # gpu device number
--logdir /path/to/logdir # path for log, checkpoint
...
--user_range 18 22
#--restore_ckpt /path/to/checkpoint # if use pre-trained checkpoints
$ python gen.py --checkpoint {} --n_samples {} --savedir={} --device {} --batch_size {} --type normal
checkpoint: checkpoint path in log_dir
e.g.
./test_log/save-2020-06-17T13:52:51.090310-100000
n_samples: number of generated shapes
e.g.
100000
savedir: directory for generated shapes
e.g.
./test_generation
device: GPU device index
batch_size: batch size for generation
batch_size < of n_samples / 100
$ python gen.py --checkpoint ./test_log/save-2020-06-17T13:52:51.090310-100000 --n_samples 10000 --savedir=./test_generation --device 0 --batch_size 100 --type normal