Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Test/instance #14

Merged
merged 3 commits into from
May 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions mmtune/apis/tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def tune(task_processor: BaseTask, tune_config: Config,
assert hasattr(tune_config, 'metric')
assert hasattr(tune_config, 'mode') and tune_config.mode in ['min', 'max']

tune_artifact_dir = osp.join(task_processor.ARGS.work_dir, 'artifact')
tune_artifact_dir = osp.join(task_processor.args.work_dir, 'artifact')
mmcv.mkdir_or_exist(tune_artifact_dir)

return ray.tune.run(
Expand All @@ -29,10 +29,10 @@ def tune(task_processor: BaseTask, tune_config: Config,
name=exp_name,
resources_per_trial=None
if hasattr(trainable, 'default_resource_request') else dict(
cpu=task_processor.ARGS.num_workers * # noqa W504
task_processor.ARGS.num_cpus_per_worker,
gpu=task_processor.ARGS.num_workers * # noqa W504
task_processor.ARGS.num_gpus_per_worker),
cpu=task_processor.args.num_workers * # noqa W504
task_processor.args.num_cpus_per_worker,
gpu=task_processor.args.num_workers * # noqa W504
task_processor.args.num_gpus_per_worker),
stop=build_stopper(tune_config.stop)
if hasattr(tune_config, 'stop') else None,
config=build_space(tune_config.space)
Expand Down
37 changes: 16 additions & 21 deletions mmtune/mm/tasks/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,41 +13,36 @@
@TASKS.register_module()
class BaseTask(metaclass=ABCMeta):
"""Wrap the apis of target task."""
BASE_CFG: Optional[ImmutableContainer] = None
ARGS: Optional[argparse.Namespace] = None
REWRITERS: List[dict] = []

@classmethod
def set_base_cfg(cls, base_cfg: Config) -> None:
BaseTask.BASE_CFG = ImmutableContainer(base_cfg, 'base')
def __init__(self):
self.base_cfg: Optional[ImmutableContainer] = None
self.args: Optional[argparse.Namespace] = None
self.rewriters: List[dict] = []

@classmethod
def set_args(cls, args: argparse.Namespace) -> None:
BaseTask.ARGS = args
def set_base_cfg(self, base_cfg: Config) -> None:
self.base_cfg = ImmutableContainer(base_cfg, 'base')

@classmethod
def set_rewriters(cls, rewriters: List[dict] = []) -> None:
BaseTask.REWRITERS = rewriters
def set_args(self, args: argparse.Namespace) -> None:
self.args = args

def set_rewriters(self, rewriters: List[dict] = []) -> None:
self.rewriters = rewriters

@classmethod
@abstractmethod
def add_arguments(
cls,
self,
parser: Optional[argparse.ArgumentParser] = None
) -> argparse.ArgumentParser:
pass

@classmethod
def contextaware_run(cls, status, *args, **kwargs) -> None:
def contextaware_run(self, status, *args, **kwargs) -> None:
context_manager = ContextManager(**status)
return context_manager(cls.run)(*args, **kwargs)
return context_manager(self.run)(*args, **kwargs)

@classmethod
@abstractmethod
def run(cls, *args, **kwargs) -> None:
def run(self, *args, **kwargs) -> None:
pass

@classmethod
@abstractmethod
def create_trainable(cls, *args, **kwargs) -> ray.tune.Trainable:
def create_trainable(self, *args, **kwargs) -> ray.tune.Trainable:
pass
19 changes: 9 additions & 10 deletions mmtune/mm/tasks/blackbox.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import argparse
from abc import ABCMeta
from functools import partial
from typing import Callable, Optional

Expand All @@ -7,23 +8,21 @@


@TASKS.register_module()
class BloackBoxTask(BaseTask):
class BloackBoxTask(BaseTask, metaclass=ABCMeta):

@classmethod
def add_arguments(
cls,
self,
parser: Optional[argparse.ArgumentParser] = None
) -> argparse.ArgumentParser:

if parser is None:
parser = argparse.ArgumentParser(description='Train a segmentor')
parser = argparse.ArgumentParser(description='black box')
return parser

@classmethod
def create_trainable(cls) -> Callable:
def create_trainable(self) -> Callable:
return partial(
cls.contextaware_run,
self.contextaware_run,
dict(
base_cfg=BloackBoxTask.BASE_CFG,
args=BloackBoxTask.ARGS,
rewriters=BaseTask.REWRITERS))
base_cfg=self.BASE_CFG,
args=self.ARGS,
rewriters=self.REWRITERS))
23 changes: 9 additions & 14 deletions mmtune/mm/tasks/mmseg.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,8 @@
@TASKS.register_module()
class MMSegmentation(MMTrainBasedTask):

@classmethod
def add_arguments(
cls,
self,
parser: Optional[argparse.ArgumentParser] = None
) -> argparse.ArgumentParser:

Expand Down Expand Up @@ -62,24 +61,21 @@ def add_arguments(
help='resume from the latest checkpoint automatically.')
return parser

@classmethod
def build_model(cls,
def build_model(self,
cfg: Config,
train_cfg: Optional[Config] = None,
test_cfg: Optional[Config] = None) -> torch.nn.Module:
from mmseg.models.builder import build_segmentor
return build_segmentor(cfg, train_cfg, test_cfg)

@classmethod
def build_dataset(
cls,
self,
cfg: Config,
default_args: Optional[Config] = None) -> torch.utils.data.Dataset:
from mmseg.datasets.builder import build_dataset
return build_dataset(cfg, default_args)

@classmethod
def train_model(cls,
def train_model(self,
model: torch.nn.Module,
dataset: torch.utils.data.Dataset,
cfg: Config,
Expand All @@ -92,8 +88,7 @@ def train_model(cls,
meta)
return

@classmethod
def run(cls, *args, **kwargs):
def run(self, *args, **kwargs):
from mmseg import __version__
from mmseg.apis import init_random_seed, set_random_seed
from mmseg.utils import collect_env, get_root_logger, setup_multi_processes
Expand Down Expand Up @@ -165,7 +160,7 @@ def run(cls, *args, **kwargs):
meta['seed'] = seed
meta['exp_name'] = osp.basename(args.config)

model = cls.build_model(
model = self.build_model(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
Expand All @@ -174,11 +169,11 @@ def run(cls, *args, **kwargs):
# SyncBN is not support for DP
logger.info(model)

datasets = [cls.build_dataset(cfg.data.train)]
datasets = [self.build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(cls.build_dataset(val_dataset))
datasets.append(self.build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmseg version, config file content and class names in
# checkpoints as meta data
Expand All @@ -191,7 +186,7 @@ def run(cls, *args, **kwargs):
model.CLASSES = datasets[0].CLASSES
# passing checkpoint meta for saving best checkpoint
meta.update(cfg.checkpoint_config.meta)
cls.train_model(
self.train_model(
model,
datasets,
cfg,
Expand Down
33 changes: 15 additions & 18 deletions mmtune/mm/tasks/mmtrainbase.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,44 +15,41 @@
@TASKS.register_module()
class MMTrainBasedTask(BaseTask):

@classmethod
@abstractmethod
def build_model(cls, cfg: mmcv.Config, **kwargs) -> torch.nn.Module:
def build_model(self, cfg: mmcv.Config, **kwargs) -> torch.nn.Module:
pass

@classmethod
@abstractmethod
def build_dataset(cls, cfg: mmcv.Config,
def build_dataset(self, cfg: mmcv.Config,
**kwargs) -> torch.utils.data.Dataset:
pass

@classmethod
@abstractmethod
def train_model(cls, model: torch.nn.Module,
def train_model(self, model: torch.nn.Module,
dataset: torch.utils.data.Dataset, cfg: mmcv.Config,
**kwargs) -> None:
pass

@classmethod
def contextaware_run(cls, status, backend, *args, **kwargs) -> None:

def contextaware_run(self, status, backend, *args, **kwargs) -> None:
from mmtune.mm import hooks # noqa F401
if backend == 'nccl' and os.getenv('NCCL_BLOCKING_WAIT') is None:
os.environ['NCCL_BLOCKING_WAIT'] = '0'
context_manager = ContextManager(**status)
return context_manager(cls.run)(*args, **kwargs)
return context_manager(self.run)(*args, **kwargs)

@classmethod
def create_trainable(cls, backend: str = 'nccl') -> ray.tune.trainable:
def create_trainable(self, backend: str = 'nccl') -> ray.tune.trainable:
assert backend in ['gloo', 'nccl']

return DistributedTrainableCreator(
partial(
cls.contextaware_run,
self.contextaware_run,
dict(
base_cfg=cls.BASE_CFG,
args=cls.ARGS,
rewriters=cls.REWRITERS), backend),
base_cfg=self.base_cfg,
args=self.args,
rewriters=self.rewriters), backend),
backend=backend,
num_workers=cls.ARGS.num_workers,
num_gpus_per_worker=cls.ARGS.num_gpus_per_worker,
num_cpus_per_worker=cls.ARGS.num_cpus_per_worker)
num_workers=self.args.num_workers,
num_gpus_per_worker=self.args.num_cpus_per_worker,
num_cpus_per_worker=self.args.num_cpus_per_worker)

3 changes: 1 addition & 2 deletions mmtune/mm/tasks/sphere.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,7 @@
@TASKS.register_module()
class Sphere(BloackBoxTask):

@classmethod
def run(cls, *args, **kwargs):
def run(self, *args, **kwargs):
args = kwargs['args']
cfg = Config.fromfile(args.config)

Expand Down