-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #22 from SFI-Visual-Intelligence/solveig-branch
Added folders for our test, this resolves issue #17
- Loading branch information
Showing
6 changed files
with
212 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
Empty file.
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
from torch.utils.data import Dataset | ||
import numpy as np | ||
import h5py | ||
from torchvision import transforms | ||
from PIL import Image | ||
import torch | ||
|
||
|
||
class USPSH5_Digit_7_9_Dataset(Dataset): | ||
""" | ||
Custom USPS dataset class that loads images with digits 7-9 from an .h5 file. | ||
Parameters | ||
---------- | ||
h5_path : str | ||
Path to the USPS `.h5` file. | ||
transform : callable, optional, default=None | ||
A transform function to apply on images. If None, no transformation is applied. | ||
Attributes | ||
---------- | ||
images : numpy.ndarray | ||
The filtered images corresponding to digits 7-9. | ||
labels : numpy.ndarray | ||
The filtered labels corresponding to digits 7-9. | ||
transform : callable, optional | ||
A transform function to apply to the images. | ||
""" | ||
|
||
def __init__(self, h5_path, mode, transform=None): | ||
super().__init__() | ||
""" | ||
Initializes the USPS dataset by loading images and labels from the given `.h5` file. | ||
Parameters | ||
---------- | ||
h5_path : str | ||
Path to the USPS `.h5` file. | ||
transform : callable, optional, default=None | ||
A transform function to apply on images. | ||
""" | ||
|
||
self.transform = transform | ||
self.mode = mode | ||
self.h5_path = h5_path | ||
# Load the dataset from the HDF5 file | ||
with h5py.File(self.h5_path, "r") as hf: | ||
images = hf[self.mode]["data"][:] | ||
labels = hf[self.mode]["target"][:] | ||
|
||
# Filter only digits 7, 8, and 9 | ||
mask = np.isin(labels, [7, 8, 9]) | ||
self.images = images[mask] | ||
self.labels = labels[mask] | ||
|
||
def __len__(self): | ||
""" | ||
Returns the total number of samples in the dataset. | ||
Returns | ||
------- | ||
int | ||
The number of images in the dataset. | ||
""" | ||
return len(self.images) | ||
|
||
def __getitem__(self, id): | ||
""" | ||
Returns a sample from the dataset given an index. | ||
Parameters | ||
---------- | ||
idx : int | ||
The index of the sample to retrieve. | ||
Returns | ||
------- | ||
tuple | ||
- image (PIL Image): The image at the specified index. | ||
- label (int): The label corresponding to the image. | ||
""" | ||
# Convert to PIL Image (USPS images are typically grayscale 16x16) | ||
image = Image.fromarray(self.images[id].astype(np.uint8), mode="L") | ||
label = int(self.labels[id]) # Convert label to integer | ||
|
||
if self.transform: | ||
image = self.transform(image) | ||
|
||
return image, label | ||
|
||
|
||
def main(): | ||
# Example Usage: | ||
transform = transforms.Compose([ | ||
transforms.Resize((16, 16)), # Ensure images are 16x16 | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.5,), (0.5,)) # Normalize to [-1, 1] | ||
]) | ||
|
||
# Load the dataset | ||
dataset = USPSH5_Digit_7_9_Dataset(h5_path="C:/Users/Solveig/OneDrive/Dokumente/UiT PhD/Courses/Git/usps.h5", mode="train", transform=transform) | ||
data_loader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True) | ||
batch = next(iter(data_loader)) # grab a batch from the dataloader | ||
img, label = batch | ||
print(img.shape) | ||
print(label.shape) | ||
|
||
# Check dataset size | ||
print(f"Dataset size: {len(dataset)}") | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import torch.nn as nn | ||
import torch | ||
|
||
|
||
class F1Score(nn.Module): | ||
""" | ||
F1 Score implementation with direct averaging inside the compute method. | ||
Parameters | ||
---------- | ||
num_classes : int | ||
Number of classes. | ||
Attributes | ||
---------- | ||
num_classes : int | ||
The number of classes. | ||
tp : torch.Tensor | ||
Tensor for True Positives (TP) for each class. | ||
fp : torch.Tensor | ||
Tensor for False Positives (FP) for each class. | ||
fn : torch.Tensor | ||
Tensor for False Negatives (FN) for each class. | ||
""" | ||
def __init__(self, num_classes): | ||
""" | ||
Initializes the F1Score object, setting up the necessary state variables. | ||
Parameters | ||
---------- | ||
num_classes : int | ||
The number of classes in the classification task. | ||
""" | ||
|
||
super().__init__() | ||
|
||
self.num_classes = num_classes | ||
|
||
# Initialize variables for True Positives (TP), False Positives (FP), and False Negatives (FN) | ||
self.tp = torch.zeros(num_classes) | ||
self.fp = torch.zeros(num_classes) | ||
self.fn = torch.zeros(num_classes) | ||
|
||
def update(self, preds, target): | ||
""" | ||
Update the variables with predictions and true labels. | ||
Parameters | ||
---------- | ||
preds : torch.Tensor | ||
Predicted logits (shape: [batch_size, num_classes]). | ||
target : torch.Tensor | ||
True labels (shape: [batch_size]). | ||
""" | ||
preds = torch.argmax(preds, dim=1) | ||
|
||
# Calculate True Positives (TP), False Positives (FP), and False Negatives (FN) per class | ||
for i in range(self.num_classes): | ||
self.tp[i] += torch.sum((preds == i) & (target == i)).float() | ||
self.fp[i] += torch.sum((preds == i) & (target != i)).float() | ||
self.fn[i] += torch.sum((preds != i) & (target == i)).float() | ||
|
||
def compute(self): | ||
""" | ||
Compute the F1 score. | ||
Returns | ||
------- | ||
torch.Tensor | ||
The computed F1 score. | ||
""" | ||
|
||
# Compute F1 score based on the specified averaging method | ||
f1_score = 2 * torch.sum(self.tp) / (2 * torch.sum(self.tp) + torch.sum(self.fp) + torch.sum(self.fn)) | ||
|
||
return f1_score | ||
|
||
|
||
def test_f1score(): | ||
f1_metric = F1Score(num_classes=3) | ||
preds = torch.tensor([[0.8, 0.1, 0.1], | ||
[0.2, 0.7, 0.1], | ||
[0.2, 0.3, 0.5], | ||
[0.1, 0.2, 0.7]]) | ||
|
||
target = torch.tensor([0, 1, 0, 2]) | ||
|
||
f1_metric.update(preds, target) | ||
assert f1_metric.tp.sum().item() > 0, "Expected some true positives." | ||
assert f1_metric.fp.sum().item() > 0, "Expected some false positives." | ||
assert f1_metric.fn.sum().item() > 0, "Expected some false negatives." |