Official Implementation of "NERI: IMPLICIT NEURAL REPRESENTATION OF LIDAR POINT CLOUD USING RANGE IMAGE SEQUENCE"
The dataset used in this work can be downloaded from KITTI. It should be organized as follows:
sequence/00/
velodyne/
000000.bin
000001.bin
000002.bin
......
calib.txt
pose.txt
......
You can install the dependencies using the following command:
conda create -n neri
conda activate neri
pip install -r requirements.txt
Here is an example command for training:
python train.py -e 600 --outf tp --stem_dim_num 64_1 --fc_hw_dim 4_125_26 --single_res --act swish --eval_freq=1 --temporal_embed='1.25_20' --translation_embed='1.25_30' --rotation_embed='1.25_30' --segmentation --cfg='config/kitti_00.yaml' --strides 2 2 2 2
Here is an example command for testing:
python train.py -e 600 --outf tp --stem_dim_num 64_1 --fc_hw_dim 4_125_26 --single_res --act swish --eval_freq=1 --temporal_embed='1.25_20' --translation_embed='1.25_30' --rotation_embed='1.25_30' --segmentation --cfg='config/kitti_00.yaml' --strides 2 2 2 2 --eval_only --quant_bit=-1
python train.py -e 600 --outf tp --stem_dim_num 64_1 --fc_hw_dim 4_125_26 --single_res --act swish --eval_freq=1 --temporal_embed='1.25_20' --translation_embed='1.25_30' --rotation_embed='1.25_30' --segmentation --cfg='config/kitti_00.yaml' --strides 2 2 2 2 --eval_only --quant_mode='pw-1' --quant_bit=16
The bpp (bits per point) can be calculated by:
If you have any questions, concerns, or would like to contribute to this project, feel free to reach out. You can contact us at:
- Email: [email protected]