Skip to content

Commit

Permalink
remove pfr text
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Dec 26, 2023
1 parent 93c338f commit b57fa62
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 27 deletions.
25 changes: 0 additions & 25 deletions blueprint/src/chapter/clt.tex
Original file line number Diff line number Diff line change
@@ -1,31 +1,6 @@
\chapter{The central limit theorem}


\begin{lemma}[Concavity]\label{concave}
\lean{Real.strictConcaveOn_negMulLog}\leanok
$h$ is strictly concave on $[0,1]$.
\end{lemma}

\begin{proof} \leanok Check that $h'$ is strictly monotone decreasing.
\end{proof}

\begin{lemma}[Jensen]\label{jensen}
\lean{Real.sum_negMulLog_le} \leanok
If $S$ is a finite set, and $\sum_{s \in S} w_s = 1$ for some non-negative $w_s$, and $p_s \in [0,1]$ for all $s \in S$, then
$$ \sum_{s \in S} w_s h(p_s) \leq h(\sum_{s \in S} w_s p_s).$$
\end{lemma}

\begin{proof} \uses{concave}\leanok Apply Jensen and Lemma \ref{concave}.
\end{proof}

\begin{lemma}[Converse Jensen]\label{converse-jensen}
\lean{Real.sum_negMulLog_eq}\leanok
If equality holds in the above lemma, then $p_s = \sum_{s \in S} w_s h(p_s)$ whenever $w_s \neq 0$.
\end{lemma}

\begin{proof} \uses{concave}\leanok Need some converse form of Jensen, not sure if it is already in Mathlib. May also wish to state it as an if and only if.
\end{proof}

\begin{theorem}[Central limit theorem]\label{clt}
Let $\xi_1, \xi_2, \ldots$ be i.i.d. random variables with mean 0 and variance 1, and let $\zeta$ be a random variable with law $\mathcal N(0,1)$. Then
\begin{align*}
Expand Down
15 changes: 13 additions & 2 deletions blueprint/src/chapter/mathlib_defs.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,20 @@ \chapter{Useful definitions from Mathlib}

\begin{definition}[Convergence in probability]\label{def:cvg_probability}
\lean{MeasureTheory.TendstoInMeasure} \leanok
We say that $(\xi_i)_{i \in \mathbb{N}}$ tends to $\xi$ in probability (or in measure) if for all $\varepsilon > 0$
We say that $(X_i)_{i \in \mathbb{N}}$ tends to $X$ in probability (or in measure) in a space with distance function $d$ if for all $\varepsilon > 0$
\begin{align*}
\mathbb{P}(d(\xi_n, \xi) \ge \varepsilon) \to_{n \to +\infty} 0
\mathbb{P}(d(X_n, X) \ge \varepsilon) \to_{n \to +\infty} 0
\end{align*}
\end{definition}

\begin{definition}[Weak convergence of probability measures]\label{def:weak_cvg_measure}
\lean{MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_integral_tendsto} \leanok
In a topological space $S$ in which the opens are measurable, we say that a sequence of probability measures $\mu_n$ converges weakly to a probability measure $\mu$ and write $\mu_n \xrightarrow{w} \mu$ if $\mu_n[f] \to \mu[f]$ for every bounded continuous function $f : S \to \mathbb{R}$.
\end{definition}

We write $\mathcal L(X)$ for the law of a random variable $X : \Omega \to S$. This is a measure on $S$, defined as the map of the measure on $\Omega$ by $X$.

\begin{definition}[Convergence in distribution]\label{def:cvg_distribution}
\uses{def:weak_cvg_measure}
We say that $X_n$ converges in distribution to $X$ and write $X_n \xrightarrow{d} X$ if $\mathcal L(X_n) \xrightarrow{w} \mathcal L(X)$.
\end{definition}

0 comments on commit b57fa62

Please sign in to comment.