Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CVI Support for the Categorical Distribution #336

Merged
merged 7 commits into from
Jun 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions src/distributions/categorical.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
export Categorical
export CategoricalNaturalParameters

import Distributions: Categorical, probs

Expand All @@ -20,3 +21,46 @@ probvec(dist::Categorical) = probs(dist)
function compute_logscale(new_dist::Categorical, left_dist::Categorical, right_dist::Categorical)
return log(dot(probvec(left_dist), probvec(right_dist)))
end

struct CategoricalNaturalParameters{T <: Real, M <: AbstractArray{T}} <: NaturalParameters
η::M
end

Base.convert(::Type{CategoricalNaturalParameters}, vec::AbstractVector) = convert(CategoricalNaturalParameters{eltype(vec)}, vec)

Base.convert(::Type{CategoricalNaturalParameters{T}}, vec::AbstractVector) where {T} = CategoricalNaturalParameters(convert(AbstractVector{T}, vec))

as_naturalparams(::Type{T}, args...) where {T <: CategoricalNaturalParameters} = convert(CategoricalNaturalParameters, args...)

function Base.convert(::Type{Distribution}, params::CategoricalNaturalParameters)
params = [params.η..., 0]
return Categorical(softmax(params))
end

function naturalparams(dist::Categorical)
p = probvec(dist)
η = log.(p / p[end])[1:(end - 1)]
return CategoricalNaturalParameters(η)
end

function Base.vec(params::CategoricalNaturalParameters)
return params.η
end

function Base.:(==)(left::CategoricalNaturalParameters, right::CategoricalNaturalParameters)
return left.η == right.η
end

function isproper(::CategoricalNaturalParameters)
return true
end

function lognormalizer(params::CategoricalNaturalParameters)
return log(sum(exp.(params.η)) + 1)
end

logpdf(params::CategoricalNaturalParameters, x) = logpdf(convert(Distribution, params), x)

function Base.:-(left::CategoricalNaturalParameters, right::CategoricalNaturalParameters)
return CategoricalNaturalParameters(left.η - right.η)
end
16 changes: 15 additions & 1 deletion test/approximations/test_cvi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ using Distributions
using Zygote
using Optimisers
using DiffResults
import StatsFuns: logistic
import StatsFuns: logistic, softmax

import ReactiveMP: naturalparams, NaturalParameters, AbstractContinuousGenericLogPdf

Expand Down Expand Up @@ -143,6 +143,20 @@ end
end
end

@testset "Categorical x Categorical" begin
rng = StableRNG(42)

method = CVI(StableRNG(42), 1, 1000, Optimisers.Descent(0.007), ForwardDiffGrad(), 10, Val(true), true)

c1 = Categorical(softmax(rand(rng, 3)))
c2 = Categorical(softmax(rand(rng, 3)))

c_analytical = prod(ProdAnalytical(), c1, c2)
c_cvi = prod(method, c1, c2)

@test probvec(c_analytical) ≈ probvec(c_cvi) atol = 1e-1
end

@testset "cvi `prod` tests (n_gradpoints = 60)" begin
rng = StableRNG(42)

Expand Down
37 changes: 37 additions & 0 deletions test/distributions/test_categorical.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ using Test
using ReactiveMP
using Distributions
using Random
using StatsFuns

@testset "Categorical" begin

Expand Down Expand Up @@ -35,6 +36,42 @@ using Random
@test probvec(Categorical([1 / 3, 1 / 3, 1 / 3])) == [1 / 3, 1 / 3, 1 / 3]
@test probvec(Categorical([0.8, 0.1, 0.1])) == [0.8, 0.1, 0.1]
end

@testset "CategoricalNaturalParameters" begin
@testset "Constructor" begin
for i in 1:10
@test convert(Distribution, CategoricalNaturalParameters([0 for _ in 1:(i - 1)])) ≈ Categorical([1 / i for _ in 1:i])
@test convert(CategoricalNaturalParameters, [0 for _ in 1:i]) == CategoricalNaturalParameters([0 for _ in 1:i])
@test convert(CategoricalNaturalParameters{Float64}, [0 for _ in 1:i]) == CategoricalNaturalParameters([0 for _ in 1:i])
@test as_naturalparams(CategoricalNaturalParameters, [0 for _ in 1:i]) == CategoricalNaturalParameters([0 for _ in 1:i])
@test naturalparams(Categorical([1 / i for _ in 1:i])) == CategoricalNaturalParameters([0 for _ in 1:(i - 1)])
end
end

@testset "logpdf" begin
for i in 1:10
distribution = Categorical(softmax([rand() for _ in 1:i]))
cat_np = naturalparams(distribution)
for j in 1:i
@test logpdf(distribution, j) ≈ logpdf(cat_np, j)
end
end
end

@testset "lognormalizer" begin
for i in 1:10
distribution = Categorical(softmax([rand() for _ in 1:i]))
cat_np = naturalparams(distribution)
@test lognormalizer(cat_np) ≈ log(sum(exp.(cat_np.η)) + 1)
end
end

@testset "isproper" begin
for i in 1:10
@test isproper(CategoricalNaturalParameters([rand() for _ in 1:i])) === true
end
end
end
end

end