Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

🐞 fix(matchingnet): module filename #122

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions config/classifiers/COSOC.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
classifier:
name: COSOC
kwargs:
alpha: 0.8
beta: 0.8
num_patches: 7
fsl_alg: CC

18 changes: 10 additions & 8 deletions core/data/collates/collate_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,18 +156,20 @@ def method(self, batch):
# global_labels = torch.tensor(labels,dtype=torch.int64)
# global_labels = torch.tensor(labels,dtype=torch.int64).reshape(self.episode_size,self.way_num,
# self.shot_num*self.times+self.query_num)
patch_mode = True
global_labels = torch.tensor(labels, dtype=torch.int64).reshape(
-1, self.way_num, self.shot_num + self.query_num
)
global_labels = (
global_labels[..., 0]
.unsqueeze(-1)
.repeat(
1,
1,
self.shot_num * self.times + self.query_num * self.times_q,
if not patch_mode:
global_labels = (
global_labels[..., 0]
.unsqueeze(-1)
.repeat(
1,
1,
self.shot_num * self.times + self.query_num * self.times_q,
)
)
)

return images, global_labels
# images.shape = [e*w*(q+s) x c x h x w], global_labels.shape = [e x w x (q+s)]
Expand Down
40 changes: 25 additions & 15 deletions core/data/collates/contrib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,10 @@ def get_augment_method(
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(**CJ_DICT),
]
elif config["augment_method"] == "COSOCAugment":
trfms_list = [
transforms.RandomHorizontalFlip(),
]
else:
trfms_list = get_default_image_size_trfms(config["image_size"])
trfms_list += [
Expand All @@ -75,24 +79,30 @@ def get_augment_method(
]

else:
if config["image_size"] == 224:
trfms_list = [
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
]
elif config["image_size"] == 84:
if config['classifier']['name'] == 'COSOC':
trfms_list = [
transforms.Resize((96, 96)),
transforms.CenterCrop((84, 84)),
]
# for MTL -> alternative solution: use avgpool(ks=11)
elif config["image_size"] == 80:
trfms_list = [
transforms.Resize((92, 92)),
transforms.CenterCrop((80, 80)),
transforms.RandomResizedCrop(config["image_size"]),
transforms.RandomHorizontalFlip(),
]
else:
raise RuntimeError
if config["image_size"] == 224:
trfms_list = [
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
]
elif config["image_size"] == 84:
trfms_list = [
transforms.Resize((96, 96)),
transforms.CenterCrop((84, 84)),
]
# for MTL -> alternative solution: use avgpool(ks=11)
elif config["image_size"] == 80:
trfms_list = [
transforms.Resize((92, 92)),
transforms.CenterCrop((80, 80)),
]
else:
raise RuntimeError

return trfms_list

Expand Down
25 changes: 18 additions & 7 deletions core/data/dataloader.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms

from core.data.dataset import GeneralDataset
from core.data.dataset import GeneralDataset, COSOCDataset
from .collates import get_collate_function, get_augment_method,get_mean_std
from .samplers import DistributedCategoriesSampler, get_sampler
from ..utils import ModelType
Expand Down Expand Up @@ -40,16 +40,27 @@ def get_dataloader(config, mode, model_type, distribute):
MEAN,STD=get_mean_std(config, mode)

trfms_list = get_augment_method(config, mode)

trfms_list.append(transforms.ToTensor())
trfms_list.append(transforms.Normalize(mean=MEAN, std=STD))
trfms = transforms.Compose(trfms_list)

dataset = GeneralDataset(
data_root=config["data_root"],
mode=mode,
use_memory=config["use_memory"],
)
if config['classifier']['name'] == 'COSOC':
dataset = COSOCDataset(
data_root=config["data_root"],
mode=mode,
use_memory=config["use_memory"],
feature_image_and_crop_id=config['feature_image_and_crop_id'],
position_list=config['position_list'],
# ratio=config['ratio'],
# crop_size=config['crop_size'],
image_sz=config['image_size'],
)
else:
dataset = GeneralDataset(
data_root=config["data_root"],
mode=mode,
use_memory=config["use_memory"],
)

if config["dataloader_num"] == 1 or mode in ["val", "test"]:

Expand Down
103 changes: 103 additions & 0 deletions core/data/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,11 @@

from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import torchvision.transforms.functional as functional
import numpy as np
import torch
import random


def pil_loader(path):
Expand Down Expand Up @@ -183,3 +188,101 @@ def __getitem__(self, idx):
label = self.label_list[idx]

return data, label

def crop_func(img, crop, ratio = 1.2):
"""
Given cropping positios, relax for a certain ratio, and return new crops
, along with the area ratio.
"""
assert len(crop) == 4
w,h = functional.get_image_size(img)
if crop[0] == -1.:
crop[0],crop[1],crop[2],crop[3] = 0., 0., h, w
else:
crop[0] = max(0, crop[0]-crop[2]*(ratio-1)/2)
crop[1] = max(0, crop[1]-crop[3]*(ratio-1)/2)
crop[2] = min(ratio*crop[2], h-crop[0])
crop[3] = min(ratio*crop[3], w-crop[1])
return crop, crop[2]*crop[3]/(w*h)

class COSOCDataset(GeneralDataset):
def __init__(self, data_root="", mode="train", loader=default_loader, use_memory=True, trfms=None, feature_image_and_crop_id='', position_list='', ratio = 1.2, crop_size = 0.08, image_sz = 84):
super().__init__(data_root, mode, loader, use_memory, trfms)
self.image_sz = image_sz
self.ratio = ratio
self.crop_size = crop_size
with open(feature_image_and_crop_id, 'rb') as f:
self.feature_image_and_crop_id = pickle.load(f)
self.position_list = np.load(position_list)
self._get_id_position_map()

def _get_id_position_map(self):
self.position_map = {}
for i, feature_image_and_crop_ids in self.feature_image_and_crop_id.items():
for clusters in feature_image_and_crop_ids:
for image in clusters:
# print(image)
if image[0] in self.position_map:
self.position_map[image[0]].append((image[1],image[2]))
else:
self.position_map[image[0]] = [(image[1],image[2])]

def _multi_crop_get(self, idx):
if self.use_memory:
data = self.data_list[idx]
else:
image_name = self.data_list[idx]
image_path = os.path.join(self.data_root, "images", image_name)
data = self.loader(image_path)
... # image -> aug(collate) -> tensor (b, patch, ...) -> classifier

if self.trfms is not None:
data = self.trfms(data)
label = self.label_list[idx]

return data, label

def _prob_crop_get(self, idx):
if self.use_memory:
data = self.data_list[idx]
else:
image_name = self.data_list[idx]
image_path = os.path.join(self.data_root, "images", image_name)
data = self.loader(image_path)
idx = int(idx)

x = random.random()
ran_crop_prob = 1 - torch.tensor(self.position_map[idx][0][1]).sum()
if x > ran_crop_prob:
crop_ids = self.position_map[idx][0][0]
if ran_crop_prob <= x < ran_crop_prob+self.position_map[idx][0][1][0]:
crop_id = crop_ids[0]
elif ran_crop_prob+self.position_map[idx][0][1][0] <= x < ran_crop_prob+self.position_map[idx][0][1][1]+self.position_map[idx][0][1][0]:
crop_id = crop_ids[1]
else:
crop_id = crop_ids[2]
crop = self.position_list[idx][crop_id]
crop, space_ratio = crop_func(data, crop, ratio = self.ratio)
data = functional.crop(data,crop[0],crop[1], crop[2],crop[3])
data = transforms.RandomResizedCrop(self.image_sz, scale = (self.crop_size/space_ratio, 1.0))(data)
else:
data = transforms.RandomResizedCrop(self.image_sz)(data)

if self.trfms is not None:
data = self.trfms(data)
label = self.label_list[idx]
return data, label

def __getitem__(self, idx):
"""Return a PyTorch like dataset item of (data, label) tuple.

Args:
idx (int): The __getitem__ id.

Returns:
tuple: A tuple of (image, label)
"""
if self.mode == 'train':
return self._prob_crop_get(idx)
else:
return self._multi_crop_get(idx)
2 changes: 1 addition & 1 deletion core/model/backbone/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .conv_four_mcl import Conv64F_MCL
from .resnet_12 import resnet12, resnet12woLSC
from .resnet_12_mcl import resnet12_mcl,resnet12_r2d2
from .resnet_12_cosoc import resnet12_cosoc
from .resnet_18 import resnet18
from .wrn import WRN
from .resnet_12_mtl_offcial import resnet12MTLofficial
Expand All @@ -11,7 +12,6 @@
from .resnet_bdc import resnet12Bdc, resnet18Bdc
from core.model.backbone.utils.maml_module import convert_maml_module


def get_backbone(config):
"""Get the backbone according to the config dict.

Expand Down
1 change: 1 addition & 0 deletions core/model/backbone/resnet_12.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,7 @@ def __init__(
maxpool_last2=True,
):
self.inplanes = 3
self.outdim = planes[-1]
super(ResNet, self).__init__()

self.layer1 = self._make_layer(
Expand Down
97 changes: 97 additions & 0 deletions core/model/backbone/resnet_12_cosoc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import torch.nn as nn


def conv3x3(in_planes, out_planes):
return nn.Conv2d(in_planes, out_planes, 3, padding=1, bias=False)


def conv1x1(in_planes, out_planes):
return nn.Conv2d(in_planes, out_planes, 1, bias=False)


def norm_layer(planes):
return nn.BatchNorm2d(planes)


class Block(nn.Module):

def __init__(self, inplanes, planes, downsample):
super().__init__()

self.relu = nn.LeakyReLU(0.1)

self.conv1 = conv3x3(inplanes, planes)
self.bn1 = norm_layer(planes)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.conv3 = conv3x3(planes, planes)
self.bn3 = norm_layer(planes)

self.downsample = downsample

self.maxpool = nn.MaxPool2d(2)

def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

identity = self.downsample(x)

out += identity
out = self.relu(out)

out = self.maxpool(out)

return out


class ResNet12(nn.Module):
"""The standard popular ResNet12 Model used in Few-Shot Learning.
"""
def __init__(self, channels):
super().__init__()

self.inplanes = 3

self.layer1 = self._make_layer(channels[0])
self.layer2 = self._make_layer(channels[1])
self.layer3 = self._make_layer(channels[2])
self.layer4 = self._make_layer(channels[3])

self.outdim = channels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out',
nonlinearity='leaky_relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def _make_layer(self, planes):
downsample = nn.Sequential(
conv1x1(self.inplanes, planes),
norm_layer(planes),
)
block = Block(self.inplanes, planes, downsample)
self.inplanes = planes
return block

def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# x = x.view(x.shape[0], x.shape[1], -1).mean(dim=2).unsqueeze_(2).unsqueeze_(3)
return x


def resnet12_cosoc():
return ResNet12([64, 160, 320, 640])
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
from .meta_model import MetaModel
from core.utils import accuracy
from ..backbone.utils import convert_maml_module
import utils
import torch.nn.functional as F

class IFSLUtils(nn.Module):
Expand Down
Loading