Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OptionChain and OptionContract improvements #4804

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 164 additions & 0 deletions Algorithm.CSharp/AddOptionContractExpiresRegressionAlgorithm.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

using System;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using System.Collections.Generic;

namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// We add an option contract using <see cref="QCAlgorithm.AddOptionContract"/> and place a trade and wait till it expires
/// later will liquidate the resulting equity position and assert both option and underlying get removed
/// </summary>
public class AddOptionContractExpiresRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private DateTime _expiration = new DateTime(2014, 06, 21);
private Symbol _option;
private Symbol _twx;
private bool _traded;

public override void Initialize()
{
SetStartDate(2014, 06, 05);
SetEndDate(2014, 06, 30);

_twx = QuantConnect.Symbol.Create("TWX", SecurityType.Equity, Market.USA);

AddUniverse("my-daily-universe-name", time => new List<string> { "AAPL" });
}

public override void OnData(Slice data)
{
if (_option == null)
{
var option = OptionChainProvider.GetOptionContractList(_twx, Time)
.OrderBy(symbol => symbol.ID.Symbol)
.FirstOrDefault(optionContract => optionContract.ID.Date == _expiration
&& optionContract.ID.OptionRight == OptionRight.Call
&& optionContract.ID.OptionStyle == OptionStyle.American);
if (option != null)
{
_option = AddOptionContract(option).Symbol;
}
}

if (_option != null && Securities[_option].Price != 0 && !_traded)
{
_traded = true;
Buy(_option, 1);

foreach (var symbol in new [] { _option, _option.Underlying })
{
var config = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(symbol).ToList();

if (!config.Any())
{
throw new Exception($"Was expecting configurations for {symbol}");
}
if (config.Any(dataConfig => dataConfig.DataNormalizationMode != DataNormalizationMode.Raw))
{
throw new Exception($"Was expecting DataNormalizationMode.Raw configurations for {symbol}");
}
}
}

if (Time.Date > _expiration)
{
if (SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(_option).Any())
{
throw new Exception($"Unexpected configurations for {_option} after it has been delisted");
}

if (Securities[_twx].Invested)
{
if (!SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(_twx).Any())
{
throw new Exception($"Was expecting configurations for {_twx}");
}

// first we liquidate the option exercised position
Liquidate(_twx);
}
}
else if (Time.Date > _expiration && !Securities[_twx].Invested)
{
if (SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(_twx).Any())
{
throw new Exception($"Unexpected configurations for {_twx} after it has been liquidated");
}
}
}

/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;

/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };

/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "3"},
{"Average Win", "2.94%"},
{"Average Loss", "-2.98%"},
{"Compounding Annual Return", "-1.749%"},
{"Drawdown", "0.200%"},
{"Expectancy", "-0.006"},
{"Net Profit", "-0.124%"},
{"Sharpe Ratio", "3.589"},
{"Probabilistic Sharpe Ratio", "90.473%"},
{"Loss Rate", "50%"},
{"Win Rate", "50%"},
{"Profit-Loss Ratio", "0.99"},
{"Alpha", "0.007"},
{"Beta", "-0.001"},
{"Annual Standard Deviation", "0.002"},
{"Annual Variance", "0"},
{"Information Ratio", "-2.913"},
{"Tracking Error", "0.057"},
{"Treynor Ratio", "-4.947"},
{"Total Fees", "$2.00"},
{"Fitness Score", "0.001"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "-0.946"},
{"Return Over Maximum Drawdown", "-10.498"},
{"Portfolio Turnover", "0.007"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "1123164511"}
};
}
}
216 changes: 216 additions & 0 deletions Algorithm.CSharp/AddOptionContractFromUniverseRegressionAlgorithm.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;

namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// We add an option contract using <see cref="QCAlgorithm.AddOptionContract"/> and place a trade, the underlying
/// gets deselected from the universe selection but should still be present since we manually added the option contract.
/// Later we call <see cref="QCAlgorithm.RemoveOptionContract"/> and expect both option and underlying to be removed.
/// </summary>
public class AddOptionContractFromUniverseRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private DateTime _expiration = new DateTime(2014, 06, 21);
private SecurityChanges _securityChanges = SecurityChanges.None;
private Symbol _option;
private Symbol _aapl;
private Symbol _twx;
private bool _traded;

public override void Initialize()
{
_twx = QuantConnect.Symbol.Create("TWX", SecurityType.Equity, Market.USA);
_aapl = QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA);
UniverseSettings.Resolution = Resolution.Minute;
UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw;

SetStartDate(2014, 06, 05);
SetEndDate(2014, 06, 09);

AddUniverse(enumerable => new[] { Time.Date <= new DateTime(2014, 6, 5) ? _twx : _aapl },
enumerable => new[] { Time.Date <= new DateTime(2014, 6, 5) ? _twx : _aapl });
}

public override void OnData(Slice data)
{
if (_option != null && Securities[_option].Price != 0 && !_traded)
{
_traded = true;
Buy(_option, 1);
}

if (Time.Date > new DateTime(2014, 6, 5))
{
if (Time < new DateTime(2014, 6, 6, 14, 0, 0))
{
var configs = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(_twx);
// assert underlying still there after the universe selection removed it, still used by the manually added option contract
if (!configs.Any())
{
throw new Exception($"Was expecting configurations for {_twx}" +
$" even after it has been deselected from coarse universe because we still have the option contract.");
}
}
else if (Time == new DateTime(2014, 6, 6, 14, 0, 0))
{
// liquidate & remove the option
RemoveOptionContract(_option);
}
// assert underlying was finally removed
else if(Time > new DateTime(2014, 6, 6, 14, 0, 0))
{
foreach (var symbol in new[] { _option, _option.Underlying })
{
var configs = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(symbol);
if (configs.Any())
{
throw new Exception($"Unexpected configuration for {symbol} after it has been deselected from coarse universe and option contract is removed.");
}
}
}
}
}

public override void OnSecuritiesChanged(SecurityChanges changes)
{
if (_securityChanges.RemovedSecurities.Intersect(changes.RemovedSecurities).Any())
{
throw new Exception($"SecurityChanges.RemovedSecurities intersect {changes.RemovedSecurities}. We expect no duplicate!");
}
if (_securityChanges.AddedSecurities.Intersect(changes.AddedSecurities).Any())
{
throw new Exception($"SecurityChanges.AddedSecurities intersect {changes.RemovedSecurities}. We expect no duplicate!");
}
// keep track of all removed and added securities
_securityChanges += changes;

if (changes.AddedSecurities.Any(security => security.Symbol.SecurityType == SecurityType.Option))
{
return;
}

foreach (var addedSecurity in changes.AddedSecurities)
{
var option = OptionChainProvider.GetOptionContractList(addedSecurity.Symbol, Time)
.OrderBy(symbol => symbol.ID.Symbol)
.First(optionContract => optionContract.ID.Date == _expiration
&& optionContract.ID.OptionRight == OptionRight.Call
&& optionContract.ID.OptionStyle == OptionStyle.American);
AddOptionContract(option);

foreach (var symbol in new[] { option, option.Underlying })
{
var config = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(symbol).ToList();

if (!config.Any())
{
throw new Exception($"Was expecting configurations for {symbol}");
}
if (config.Any(dataConfig => dataConfig.DataNormalizationMode != DataNormalizationMode.Raw))
{
throw new Exception($"Was expecting DataNormalizationMode.Raw configurations for {symbol}");
}
}

// just keep the first we got
if (_option == null)
{
_option = option;
}
}
}

public override void OnEndOfAlgorithm()
{
if (SubscriptionManager.Subscriptions.Any(dataConfig => dataConfig.Symbol == _twx || dataConfig.Symbol.Underlying == _twx))
{
throw new Exception($"Was NOT expecting any configurations for {_twx} or it's options, since we removed the contract");
}

if (SubscriptionManager.Subscriptions.All(dataConfig => dataConfig.Symbol != _aapl))
{
throw new Exception($"Was expecting configurations for {_aapl}");
}
if (SubscriptionManager.Subscriptions.All(dataConfig => dataConfig.Symbol.Underlying != _aapl))
{
throw new Exception($"Was expecting options configurations for {_aapl}");
}
}

/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;

/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };

/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "2"},
{"Average Win", "0%"},
{"Average Loss", "-0.23%"},
{"Compounding Annual Return", "-15.596%"},
{"Drawdown", "0.200%"},
{"Expectancy", "-1"},
{"Net Profit", "-0.232%"},
{"Sharpe Ratio", "-7.739"},
{"Probabilistic Sharpe Ratio", "1.216%"},
{"Loss Rate", "100%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.027"},
{"Beta", "-0.174"},
{"Annual Standard Deviation", "0.006"},
{"Annual Variance", "0"},
{"Information Ratio", "-11.586"},
{"Tracking Error", "0.042"},
{"Treynor Ratio", "0.286"},
{"Total Fees", "$2.00"},
{"Fitness Score", "0"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "-19.883"},
{"Return Over Maximum Drawdown", "-67.224"},
{"Portfolio Turnover", "0.014"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "721476625"}
};
}
}
Loading