Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Precision issue in get_confusion_matrix #7187

Merged
merged 11 commits into from
Nov 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 5 additions & 8 deletions monai/metrics/confusion_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,9 +153,6 @@ def get_confusion_matrix(y_pred: torch.Tensor, y: torch.Tensor, include_backgrou
if not include_background:
y_pred, y = ignore_background(y_pred=y_pred, y=y)

y = y.float()
y_pred = y_pred.float()

if y.shape != y_pred.shape:
raise ValueError(f"y_pred and y should have same shapes, got {y_pred.shape} and {y.shape}.")

Expand All @@ -165,12 +162,12 @@ def get_confusion_matrix(y_pred: torch.Tensor, y: torch.Tensor, include_backgrou
# As for classification tasks, S equals to 1.
y_pred = y_pred.reshape(batch_size, n_class, -1)
y = y.reshape(batch_size, n_class, -1)
tp = ((y_pred + y) == 2).float()
tn = ((y_pred + y) == 0).float()
tp = (y_pred + y) == 2
tn = (y_pred + y) == 0

tp = tp.sum(dim=[2])
tn = tn.sum(dim=[2])
p = y.sum(dim=[2])
tp = tp.sum(dim=[2]).float()
tn = tn.sum(dim=[2]).float()
p = y.sum(dim=[2]).float()
n = y.shape[-1] - p

fn = p - tp
Expand Down
13 changes: 5 additions & 8 deletions monai/metrics/f_beta_score.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,9 +63,6 @@ def get_f_beta_score(y_pred: torch.Tensor, y: torch.Tensor, include_background:
if not include_background:
y_pred, y = ignore_background(y_pred=y_pred, y=y)

y = y.float()
y_pred = y_pred.float()

if y.shape != y_pred.shape:
raise ValueError(f"y_pred and y should have same shapes, got {y_pred.shape} and {y.shape}.")

Expand All @@ -75,12 +72,12 @@ def get_f_beta_score(y_pred: torch.Tensor, y: torch.Tensor, include_background:
# As for classification tasks, S equals to 1.
y_pred = y_pred.view(batch_size, n_class, -1)
y = y.view(batch_size, n_class, -1)
tp = ((y_pred + y) == 2).float()
tn = ((y_pred + y) == 0).float()
tp = (y_pred + y) == 2
tn = (y_pred + y) == 0

tp = tp.sum(dim=[2])
tn = tn.sum(dim=[2])
p = y.sum(dim=[2])
tp = tp.sum(dim=[2]).float()
tn = tn.sum(dim=[2]).float()
p = y.sum(dim=[2]).float()
n = y.shape[-1] - p

fn = p - tp
Expand Down
3 changes: 0 additions & 3 deletions monai/metrics/meaniou.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,9 +130,6 @@ def compute_iou(
if not include_background:
y_pred, y = ignore_background(y_pred=y_pred, y=y)

y = y.float()
y_pred = y_pred.float()

if y.shape != y_pred.shape:
raise ValueError(f"y_pred and y should have same shapes, got {y_pred.shape} and {y.shape}.")

Expand Down
12 changes: 0 additions & 12 deletions monai/metrics/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,9 +111,6 @@ def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_
self.sq_func = partial(torch.pow, exponent=2.0)

def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
y_pred = y_pred.float()
y = y.float()

return compute_mean_error_metrics(y_pred, y, func=self.sq_func)


Expand Down Expand Up @@ -143,9 +140,6 @@ def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_
self.abs_func = torch.abs

def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
y_pred = y_pred.float()
y = y.float()

return compute_mean_error_metrics(y_pred, y, func=self.abs_func)


Expand Down Expand Up @@ -176,9 +170,6 @@ def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_
self.sq_func = partial(torch.pow, exponent=2.0)

def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
y_pred = y_pred.float()
y = y.float()

mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func)
return torch.sqrt(mse_out)

Expand Down Expand Up @@ -218,9 +209,6 @@ def __init__(
self.sq_func = partial(torch.pow, exponent=2.0)

def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> Any:
y_pred = y_pred.float()
y = y.float()

mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func)
return 20 * math.log10(self.max_val) - 10 * torch.log10(mse_out)

Expand Down
3 changes: 0 additions & 3 deletions monai/metrics/surface_dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,9 +228,6 @@ def compute_surface_dice(
f"y_pred and y should have same shape, but instead, shapes are {y_pred.shape} (y_pred) and {y.shape} (y)."
)

y = y.float()
y_pred = y_pred.float()

batch_size, n_class = y_pred.shape[:2]

if n_class != len(class_thresholds):
Expand Down
32 changes: 16 additions & 16 deletions monai/metrics/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,37 +95,37 @@ def do_metric_reduction(
# some elements might be Nan (if ground truth y was missing (zeros))
# we need to account for it
nans = torch.isnan(f)
not_nans = (~nans).float()
not_nans = ~nans

t_zero = torch.zeros(1, device=f.device, dtype=f.dtype)
t_zero = torch.zeros(1, device=f.device, dtype=torch.float)
reduction = look_up_option(reduction, MetricReduction)
if reduction == MetricReduction.NONE:
return f, not_nans
return f, not_nans.float()

f[nans] = 0
if reduction == MetricReduction.MEAN:
# 2 steps, first, mean by channel (accounting for nans), then by batch
not_nans = not_nans.sum(dim=1)
f = torch.where(not_nans > 0, f.sum(dim=1) / not_nans, t_zero) # channel average
not_nans = not_nans.sum(dim=1).float()
f = torch.where(not_nans > 0, f.sum(dim=1).float() / not_nans, t_zero) # channel average

not_nans = (not_nans > 0).float().sum(dim=0)
f = torch.where(not_nans > 0, f.sum(dim=0) / not_nans, t_zero) # batch average
not_nans = (not_nans > 0).sum(dim=0).float()
f = torch.where(not_nans > 0, f.sum(dim=0).float() / not_nans, t_zero) # batch average

elif reduction == MetricReduction.SUM:
not_nans = not_nans.sum(dim=[0, 1])
not_nans = not_nans.sum(dim=[0, 1]).float()
f = torch.sum(f, dim=[0, 1]) # sum over the batch and channel dims
elif reduction == MetricReduction.MEAN_BATCH:
not_nans = not_nans.sum(dim=0)
f = torch.where(not_nans > 0, f.sum(dim=0) / not_nans, t_zero) # batch average
not_nans = not_nans.sum(dim=0).float()
f = torch.where(not_nans > 0, f.sum(dim=0).float() / not_nans, t_zero) # batch average
elif reduction == MetricReduction.SUM_BATCH:
not_nans = not_nans.sum(dim=0)
f = f.sum(dim=0) # the batch sum
not_nans = not_nans.sum(dim=0).float()
f = f.sum(dim=0).float() # the batch sum
elif reduction == MetricReduction.MEAN_CHANNEL:
not_nans = not_nans.sum(dim=1)
f = torch.where(not_nans > 0, f.sum(dim=1) / not_nans, t_zero) # channel average
not_nans = not_nans.sum(dim=1).float()
f = torch.where(not_nans > 0, f.sum(dim=1).float() / not_nans, t_zero) # channel average
elif reduction == MetricReduction.SUM_CHANNEL:
not_nans = not_nans.sum(dim=1)
f = f.sum(dim=1) # the channel sum
not_nans = not_nans.sum(dim=1).float()
f = f.sum(dim=1).float() # the channel sum
elif reduction != MetricReduction.NONE:
raise ValueError(
f"Unsupported reduction: {reduction}, available options are "
Expand Down
15 changes: 15 additions & 0 deletions tests/test_compute_confusion_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,6 +210,14 @@

TEST_CASES_CLF = [data_clf.copy(), result_clf]

TEST_CASE_PRECISION = [
{
"y_pred": torch.zeros([1, 1, 1024, 1024, 44], device=_device),
"y": torch.zeros([1, 1, 1024, 1024, 44], device=_device),
},
torch.tensor([[[0.0, 0.0, 46137344.0, 0.0]]]),
]


class TestConfusionMatrix(unittest.TestCase):
@parameterized.expand([TEST_CASE_CONFUSION_MATRIX])
Expand Down Expand Up @@ -274,6 +282,13 @@ def test_clf_with_nan(self, input_data, expected_value):
expected_value = compute_confusion_matrix_metric("tpr", expected_value)
assert_allclose(result, expected_value, atol=1e-4, rtol=1e-4)

@parameterized.expand([TEST_CASE_PRECISION])
def test_precision(self, input_data, expected_value):
# include or ignore background
result = get_confusion_matrix(**input_data)
assert_allclose(result, expected_value, atol=1e-4, rtol=1e-4)
np.testing.assert_equal(result.device, input_data["y_pred"].device)


if __name__ == "__main__":
unittest.main()