Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] 519 Add Radiogenomic GAN #531

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -124,3 +124,18 @@ temp/
# temporary testing data MedNIST
tests/testing_data/MedNIST*
tests/testing_data/*Hippocampus*

model_out
MedNIST/
MedNIST.tar.gz
hand-gan*/
ModelOut/
research/radiogenomic-gan-nodule-synthesis/ModelOut/

examples/workflows/runs/

output/

research/radiogenomic-gan-nodule-synthesis/datasets.py

.vscode/
8 changes: 4 additions & 4 deletions examples/synthesis/gan_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,11 +82,11 @@ def main():
real_dataloader = DataLoader(real_dataset, batch_size=batch_size, shuffle=True, num_workers=10)

# define function to process batchdata for input into discriminator
def prepare_batch(batchdata):
def prepare_batch(batchdata, device):
"""
Process Dataloader batchdata dict object and return image tensors for D Inferer
"""
return batchdata["hand"]
return batchdata["hand"].to(device)

# define networks
disc_net = Discriminator(
Expand Down Expand Up @@ -179,7 +179,7 @@ def generator_loss(gen_images):
discriminator_loss,
d_prepare_batch=prepare_batch,
d_train_steps=disc_train_steps,
latent_shape=latent_size,
latent_size=latent_size,
key_train_metric=key_train_metric,
train_handlers=handlers,
)
Expand All @@ -190,7 +190,7 @@ def generator_loss(gen_images):
# Training completed, save a few random generated images.
print("Saving trained generator sample output.")
test_img_count = 10
test_latents = make_latent(test_img_count, latent_size).to(device)
test_latents = make_latent(test_img_count, latent_size, device)
fakes = gen_net(test_latents)
for i, image in enumerate(fakes):
filename = "gen-fake-final-%d.png" % (i)
Expand Down
21 changes: 9 additions & 12 deletions monai/engines/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
from torch.utils.data import DataLoader

from monai.engines.utils import CommonKeys as Keys
from monai.engines.utils import GanKeys, default_make_latent, default_prepare_batch
from monai.engines.utils import GanKeys, default_gan_prepare_batch, default_make_latent, default_prepare_batch
from monai.engines.workflow import Workflow
from monai.inferers import Inferer, SimpleInferer
from monai.transforms import Transform
Expand Down Expand Up @@ -176,9 +176,8 @@ class GanTrainer(Trainer):
d_optimizer: D optimizer function.
d_loss_function: D loss function for optimizer.
g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``.
d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``.
d_train_steps: number of times to update D with real data minibatch. Defaults to ``1``.
latent_shape: size of G input latent code. Defaults to ``64``.
latent_size: size of G input latent code. Defaults to ``64``.
d_prepare_batch: callback function to prepare batchdata for D inferer.
Defaults to return ``GanKeys.REALS`` in batchdata dict.
g_prepare_batch: callback function to create batch of latent input for G inferer.
Expand Down Expand Up @@ -209,10 +208,9 @@ def __init__(
d_optimizer: Optimizer,
d_loss_function: Callable,
g_inferer: Inferer = SimpleInferer(),
d_inferer: Inferer = SimpleInferer(),
d_train_steps: int = 1,
latent_shape: int = 64,
d_prepare_batch: Callable = default_prepare_batch,
latent_size: int = 64,
d_prepare_batch: Callable = default_gan_prepare_batch,
g_prepare_batch: Callable = default_make_latent,
g_update_latents: bool = True,
iteration_update: Optional[Callable] = None,
Expand Down Expand Up @@ -240,9 +238,8 @@ def __init__(
self.d_network = d_network
self.d_optimizer = d_optimizer
self.d_loss_function = d_loss_function
self.d_inferer = d_inferer
self.d_train_steps = d_train_steps
self.latent_shape = latent_shape
self.latent_size = latent_size
self.g_prepare_batch = g_prepare_batch
self.g_update_latents = g_update_latents

Expand All @@ -263,9 +260,9 @@ def _iteration(
if batchdata is None:
raise ValueError("must provide batch data for current iteration.")

d_input = self.prepare_batch(batchdata).to(engine.state.device)
d_input = self.prepare_batch(batchdata, engine.state.device)
batch_size = self.data_loader.batch_size
g_input = self.g_prepare_batch(batch_size, self.latent_shape, batchdata).to(engine.state.device)
g_input = self.g_prepare_batch(batch_size, self.latent_size, engine.state.device, batchdata)
g_output = self.g_inferer(g_input, self.g_network)

# Train Discriminator
Expand All @@ -281,8 +278,8 @@ def _iteration(

# Train Generator
if self.g_update_latents:
g_input = self.g_prepare_batch(batch_size, self.latent_shape, batchdata).to(engine.state.device)
g_output = self.g_inferer(g_input, self.g_network)
g_input = self.g_prepare_batch(batch_size, self.latent_size, engine.state.device, batchdata)
g_output = self.g_inferer(g_input, self.g_network)
self.g_optimizer.zero_grad()
g_loss = self.g_loss_function(g_output)
g_loss.backward()
Expand Down
52 changes: 44 additions & 8 deletions monai/engines/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Optional, Sequence, Tuple, Union
from typing import Dict, List, Optional, Sequence, Tuple

import torch

Expand Down Expand Up @@ -74,17 +74,53 @@ def get_devices_spec(devices: Optional[Sequence[torch.device]] = None) -> List[t
return devices


def default_prepare_batch(
batchdata: Dict[str, torch.Tensor]
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]:
def default_prepare_batch(batchdata: Dict[str, torch.Tensor]) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
assert isinstance(batchdata, dict), "default prepare_batch expects dictionary input data."
if CommonKeys.LABEL in batchdata:
return (batchdata[CommonKeys.IMAGE], batchdata[CommonKeys.LABEL])
elif GanKeys.REALS in batchdata:
return batchdata[GanKeys.REALS]
else:
return (batchdata[CommonKeys.IMAGE], None)


def default_make_latent(num_latents: int, latent_size: int, real_data: Optional[torch.Tensor] = None) -> torch.Tensor:
return torch.randn(num_latents, latent_size)
def default_gan_prepare_batch(batchdata: Dict[str, torch.Tensor], device: torch.device) -> torch.Tensor:
"""
Prepares batchdata for GAN Discriminator training. Sends Tensor to executing device.

Args:
batchdata: Dictionary data returned by DataLoader
devices: torch.device to store tensor for execution

Raises:
AssertionError: If input data is not a dictionary.
RuntimeError: If dictionary does not have CommonKeys.IMAGE or GanKeys.REALS key.

Returns:
Batch size tensor of images on device.
"""
assert isinstance(batchdata, dict), "default prepare_batch expects dictionary input data."
if GanKeys.REALS in batchdata:
data = batchdata[GanKeys.REALS]
elif CommonKeys.IMAGE in batchdata:
data = batchdata[CommonKeys.IMAGE]
else:
raise RuntimeError("default gan_prepare_batch expects '%s' or '%s' key." % (CommonKeys.IMAGE, GanKeys.REALS))
return data.to(device)


def default_make_latent(
num_latents: int, latent_size: int, device: torch.device, batchdata: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Prepares a latent code for GAN Generator training. Sends Tensor to executing device.
If Generator needs additional input from Dataloader, override this func and process batchdata.

Args:
num_latents: number of latent codes to generate (typically batchsize)
latent_size: size of latent code for Generator input
device: torch.device to store tensor for execution
batchdata: Minibatch from dataloader, ignored by default.

Returns:
Randomly generated latent codes.
"""
return torch.randn(num_latents, latent_size).to(device)
1 change: 1 addition & 0 deletions monai/networks/layers/factories.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,7 @@ def batch_factory(dim: int) -> Type[Union[nn.BatchNorm1d, nn.BatchNorm2d, nn.Bat

Norm.add_factory_callable("group", lambda: nn.modules.GroupNorm)
Act.add_factory_callable("elu", lambda: nn.modules.ELU)
Act.add_factory_callable("glu", lambda: nn.modules.GLU)
Act.add_factory_callable("relu", lambda: nn.modules.ReLU)
Act.add_factory_callable("leakyrelu", lambda: nn.modules.LeakyReLU)
Act.add_factory_callable("prelu", lambda: nn.modules.PReLU)
Expand Down
130 changes: 130 additions & 0 deletions research/radiogenomic-gan-nodule-synthesis/ConvertDicomMask.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
#!/usr/bin/env python

import ast
import os

import nibabel as nib
import numpy as np
import pydicom
from pydicom.data import get_testdata_files


def findTag(dataset, tag, range_z):
for data_element in dataset:
if data_element.VR == "SQ":
for sequence_item in data_element.value:
findTag(sequence_item, tag, range_z)
else:
if data_element.name in tag:
repr_value = repr(data_element.value)
range_z.append(repr_value)
# print("{0:s} = {1:s}".format(data_element.name, repr_value))
# print(range_z)
return range_z


def convert_one_pair(imgFile, mskFile, outFile):
if os.path.isfile(mskFile):
i = 121
data = pydicom.dcmread(mskFile)
seg = data.pixel_array
seg = np.swapaxes(seg, 0, 2)

image = nib.load(imgFile)
affine = image.affine
img = image.dataobj

if np.shape(seg) == np.shape(img):
nib.save(nib.Nifti1Image(seg.astype(np.uint8), affine), outFile)
elif i == 83:
segOut = np.zeros(np.shape(img))
segOut[: seg.shape[0], : seg.shape[1], : seg.shape[2]] = seg
nib.save(nib.Nifti1Image(segOut.astype(np.uint8), affine), outFile)
else:
tag = ["Image Position (Patient)"]
range_z = findTag(data, tag, [])
print("Case", i, "different in dimension")
print("Seg Size \n", np.shape(seg))
print("Img Size \n", np.shape(img))
print("Matrix \n", affine)

spaZ = affine[2][2]
oriZ = affine[2][3]
if spaZ < 0:
spaZ = -spaZ
oriZ = -oriZ

startIdx = range_z[0]
startIdx = float(ast.literal_eval(startIdx)[2])
startIdx = int((startIdx - oriZ) / spaZ)

endIdx = range_z[len(range_z) - 1]
endIdx = float(ast.literal_eval(endIdx)[2])
endIdx = int((endIdx - oriZ) / spaZ)

print(startIdx, endIdx)

segOut = np.zeros(np.shape(img))
segOut[: seg.shape[0], : seg.shape[1], startIdx : (startIdx + np.shape(seg)[2])] = seg
nib.save(nib.Nifti1Image(segOut.astype(np.uint8), affine), outFile)


def processFolder():
ct = 0
for i in range(98, 163):
mskFile = "/media/ziyue/Research/Data/NSCLC_Radiogenomics/ImagesTrain/R01-%03d/Mask/000000.dcm" % (i)
imgFile = "/media/ziyue/Research/Data/NSCLC_Radiogenomics/ImagesTrain/R01-%03d/image.nii.gz" % (i)
outFile = "/media/ziyue/Research/Data/NSCLC_Radiogenomics/ImagesTrain/R01-%03d/mask.nii.gz" % (i)
if os.path.isfile(mskFile):
ct = ct + 1
data = pydicom.dcmread(mskFile)
seg = data.pixel_array
seg = np.swapaxes(seg, 0, 2)

image = nib.load(imgFile)
affine = image.affine
img = image.dataobj

if np.shape(seg) == np.shape(img):
nib.save(nib.Nifti1Image(seg.astype(np.uint8), affine), outFile)
elif i == 83:
segOut = np.zeros(np.shape(img))
segOut[: seg.shape[0], : seg.shape[1], : seg.shape[2]] = seg
nib.save(nib.Nifti1Image(segOut.astype(np.uint8), affine), outFile)
else:
tag = ["Image Position (Patient)"]
range_z = findTag(data, tag, [])
print("Case", i, "different in dimension")
print("Seg Size \n", np.shape(seg))
print("Img Size \n", np.shape(img))
print("Matrix \n", affine)

spaZ = affine[2][2]
oriZ = affine[2][3]
if spaZ < 0:
spaZ = -spaZ
oriZ = -oriZ

startIdx = range_z[0]
startIdx = float(ast.literal_eval(startIdx)[2])
startIdx = int((startIdx - oriZ) / spaZ)

endIdx = range_z[len(range_z) - 1]
endIdx = float(ast.literal_eval(endIdx)[2])
endIdx = int((endIdx - oriZ) / spaZ)

print(startIdx, endIdx)

segOut = np.zeros(np.shape(img))
segOut[: seg.shape[0], : seg.shape[1], startIdx : (startIdx + np.shape(seg)[2])] = seg
nib.save(nib.Nifti1Image(segOut.astype(np.uint8), affine), outFile)

print("Total image processed: ", ct)


if __name__ == "__main__":
# processFolder()
imgfile = '/nvdata/NSCLC-Radiogenomics-Fresh/test/120_chest.nii.gz'
segfile = '/nvdata/NSCLC-Radiogenomics-Fresh/test/120_seg.dcm'
outfile = '/nvdata/NSCLC-Radiogenomics-Fresh/test/120_mask_b.nii.gz'
convert_one_pair(imgfile, segfile, outfile)
Loading