-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Richard Brown <[email protected]>
- Loading branch information
Showing
7 changed files
with
323 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
A collection of dictionary-based wrappers for moving between MetaTensor types and dictionaries of data. | ||
These can be used to make backwards compatible code. | ||
Class names are ended with 'd' to denote dictionary-based transforms. | ||
""" | ||
|
||
from copy import deepcopy | ||
from typing import Dict, Hashable, Mapping | ||
|
||
from monai.config.type_definitions import NdarrayOrTensor | ||
from monai.data.meta_tensor import MetaTensor | ||
from monai.transforms.inverse import InvertibleTransform | ||
from monai.transforms.transform import MapTransform | ||
from monai.utils.enums import PostFix, TransformBackends | ||
|
||
__all__ = [ | ||
"FromMetaTensord", | ||
"FromMetaTensorD", | ||
"FromMetaTensorDict", | ||
"ToMetaTensord", | ||
"ToMetaTensorD", | ||
"ToMetaTensorDict", | ||
] | ||
|
||
|
||
class FromMetaTensord(MapTransform, InvertibleTransform): | ||
""" | ||
Dictionary-based transform to convert MetaTensor to a dictionary. | ||
If input is `{"a": MetaTensor, "b": MetaTensor}`, then output will | ||
have the form `{"a": torch.Tensor, "a_meta_dict": dict, "b": ...}`. | ||
""" | ||
|
||
backend = [TransformBackends.TORCH, TransformBackends.NUMPY] | ||
|
||
def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: | ||
d = dict(data) | ||
for key in self.key_iterator(d): | ||
self.push_transform(d, key) | ||
im: MetaTensor = d[key] # type: ignore | ||
d.update(im.as_dict(key)) | ||
return d | ||
|
||
def inverse(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: | ||
d = deepcopy(dict(data)) | ||
for key in self.key_iterator(d): | ||
# check transform | ||
_ = self.get_most_recent_transform(d, key) | ||
# do the inverse | ||
im, meta = d[key], d.pop(PostFix.meta(key), None) | ||
im = MetaTensor(im, meta=meta) # type: ignore | ||
d[key] = im | ||
# Remove the applied transform | ||
self.pop_transform(d, key) | ||
return d | ||
|
||
|
||
class ToMetaTensord(MapTransform, InvertibleTransform): | ||
""" | ||
Dictionary-based transform to convert a dictionary to MetaTensor. | ||
If input is `{"a": torch.Tensor, "a_meta_dict": dict, "b": ...}`, then output will | ||
have the form `{"a": MetaTensor, "b": MetaTensor}`. | ||
""" | ||
|
||
backend = [TransformBackends.TORCH, TransformBackends.NUMPY] | ||
|
||
def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: | ||
d = dict(data) | ||
for key in self.key_iterator(d): | ||
self.push_transform(d, key) | ||
im, meta = d[key], d.pop(PostFix.meta(key), None) | ||
im = MetaTensor(im, meta=meta) # type: ignore | ||
d[key] = im | ||
return d | ||
|
||
def inverse(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: | ||
d = deepcopy(dict(data)) | ||
for key in self.key_iterator(d): | ||
# check transform | ||
_ = self.get_most_recent_transform(d, key) | ||
# do the inverse | ||
im: MetaTensor = d[key] # type: ignore | ||
d.update(im.as_dict(key)) | ||
# Remove the applied transform | ||
self.pop_transform(d, key) | ||
return d | ||
|
||
|
||
FromMetaTensorD = FromMetaTensorDict = FromMetaTensord | ||
ToMetaTensorD = ToMetaTensorDict = ToMetaTensord |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import random | ||
import string | ||
import unittest | ||
from copy import deepcopy | ||
from typing import Optional, Union | ||
|
||
import torch | ||
from parameterized import parameterized | ||
|
||
from monai.data.meta_tensor import MetaTensor | ||
from monai.transforms import FromMetaTensord, ToMetaTensord | ||
from monai.utils.enums import PostFix | ||
from monai.utils.module import get_torch_version_tuple | ||
from tests.utils import TEST_DEVICES, assert_allclose | ||
|
||
PT_VER_MAJ, PT_VER_MIN = get_torch_version_tuple() | ||
|
||
DTYPES = [[torch.float32], [torch.float64], [torch.float16], [torch.int64], [torch.int32]] | ||
TESTS = [] | ||
for _device in TEST_DEVICES: | ||
for _dtype in DTYPES: | ||
TESTS.append((*_device, *_dtype)) | ||
|
||
|
||
def rand_string(min_len=5, max_len=10): | ||
str_size = random.randint(min_len, max_len) | ||
chars = string.ascii_letters + string.punctuation | ||
return "".join(random.choice(chars) for _ in range(str_size)) | ||
|
||
|
||
class TestToFromMetaTensord(unittest.TestCase): | ||
@staticmethod | ||
def get_im(shape=None, dtype=None, device=None): | ||
if shape is None: | ||
shape = shape = (1, 10, 8) | ||
affine = torch.randint(0, 10, (4, 4)) | ||
meta = {"fname": rand_string()} | ||
t = torch.rand(shape) | ||
if dtype is not None: | ||
t = t.to(dtype) | ||
if device is not None: | ||
t = t.to(device) | ||
m = MetaTensor(t.clone(), affine, meta) | ||
return m | ||
|
||
def check_ids(self, a, b, should_match): | ||
comp = self.assertEqual if should_match else self.assertNotEqual | ||
comp(id(a), id(b)) | ||
|
||
def check( | ||
self, | ||
out: torch.Tensor, | ||
orig: torch.Tensor, | ||
*, | ||
shape: bool = True, | ||
vals: bool = True, | ||
ids: bool = True, | ||
device: Optional[Union[str, torch.device]] = None, | ||
meta: bool = True, | ||
check_ids: bool = True, | ||
**kwargs, | ||
): | ||
if device is None: | ||
device = orig.device | ||
|
||
# check the image | ||
self.assertIsInstance(out, type(orig)) | ||
if shape: | ||
assert_allclose(torch.as_tensor(out.shape), torch.as_tensor(orig.shape)) | ||
if vals: | ||
assert_allclose(out, orig, **kwargs) | ||
if check_ids: | ||
self.check_ids(out, orig, ids) | ||
self.assertTrue(str(device) in str(out.device)) | ||
|
||
# check meta and affine are equal and affine is on correct device | ||
if isinstance(orig, MetaTensor) and isinstance(out, MetaTensor) and meta: | ||
orig_meta_no_affine = deepcopy(orig.meta) | ||
del orig_meta_no_affine["affine"] | ||
out_meta_no_affine = deepcopy(out.meta) | ||
del out_meta_no_affine["affine"] | ||
self.assertEqual(orig_meta_no_affine, out_meta_no_affine) | ||
assert_allclose(out.affine, orig.affine) | ||
self.assertTrue(str(device) in str(out.affine.device)) | ||
if check_ids: | ||
self.check_ids(out.affine, orig.affine, ids) | ||
self.check_ids(out.meta, orig.meta, ids) | ||
|
||
@parameterized.expand(TESTS) | ||
def test_from_to_meta_tensord(self, device, dtype): | ||
m1 = self.get_im(device=device, dtype=dtype) | ||
m2 = self.get_im(device=device, dtype=dtype) | ||
m3 = self.get_im(device=device, dtype=dtype) | ||
d_metas = {"m1": m1, "m2": m2, "m3": m3} | ||
m1_meta = {k: v for k, v in m1.meta.items() if k != "affine"} | ||
m1_aff = m1.affine | ||
|
||
# FROM -> forward | ||
t_from_meta = FromMetaTensord(["m1", "m2"]) | ||
d_dict = t_from_meta(d_metas) | ||
|
||
self.assertEqual( | ||
sorted(d_dict.keys()), | ||
[ | ||
"m1", | ||
PostFix.meta("m1"), | ||
PostFix.transforms("m1"), | ||
"m2", | ||
PostFix.meta("m2"), | ||
PostFix.transforms("m2"), | ||
"m3", | ||
], | ||
) | ||
self.check(d_dict["m3"], m3, ids=True) # unchanged | ||
self.check(d_dict["m1"], m1.as_tensor(), ids=False) | ||
meta_out = {k: v for k, v in d_dict["m1_meta_dict"].items() if k != "affine"} | ||
aff_out = d_dict["m1_meta_dict"]["affine"] | ||
self.check(aff_out, m1_aff, ids=True) | ||
self.assertEqual(meta_out, m1_meta) | ||
|
||
# FROM -> inverse | ||
d_meta_dict_meta = t_from_meta.inverse(d_dict) | ||
self.assertEqual( | ||
sorted(d_meta_dict_meta.keys()), ["m1", PostFix.transforms("m1"), "m2", PostFix.transforms("m2"), "m3"] | ||
) | ||
self.check(d_meta_dict_meta["m3"], m3, ids=False) # unchanged (except deep copy in inverse) | ||
self.check(d_meta_dict_meta["m1"], m1, ids=False) | ||
meta_out = {k: v for k, v in d_meta_dict_meta["m1"].meta.items() if k != "affine"} | ||
aff_out = d_meta_dict_meta["m1"].affine | ||
self.check(aff_out, m1_aff, ids=False) | ||
self.assertEqual(meta_out, m1_meta) | ||
|
||
# TO -> Forward | ||
t_to_meta = ToMetaTensord(["m1", "m2"]) | ||
del d_dict["m1_transforms"] | ||
del d_dict["m2_transforms"] | ||
d_dict_meta = t_to_meta(d_dict) | ||
self.assertEqual( | ||
sorted(d_dict_meta.keys()), ["m1", PostFix.transforms("m1"), "m2", PostFix.transforms("m2"), "m3"] | ||
) | ||
self.check(d_dict_meta["m3"], m3, ids=True) # unchanged (except deep copy in inverse) | ||
self.check(d_dict_meta["m1"], m1, ids=False) | ||
meta_out = {k: v for k, v in d_dict_meta["m1"].meta.items() if k != "affine"} | ||
aff_out = d_dict_meta["m1"].meta["affine"] | ||
self.check(aff_out, m1_aff, ids=False) | ||
self.assertEqual(meta_out, m1_meta) | ||
|
||
# TO -> Inverse | ||
d_dict_meta_dict = t_to_meta.inverse(d_dict_meta) | ||
self.assertEqual( | ||
sorted(d_dict_meta_dict.keys()), | ||
[ | ||
"m1", | ||
PostFix.meta("m1"), | ||
PostFix.transforms("m1"), | ||
"m2", | ||
PostFix.meta("m2"), | ||
PostFix.transforms("m2"), | ||
"m3", | ||
], | ||
) | ||
self.check(d_dict_meta_dict["m3"], m3.as_tensor(), ids=False) # unchanged (except deep copy in inverse) | ||
self.check(d_dict_meta_dict["m1"], m1.as_tensor(), ids=False) | ||
meta_out = {k: v for k, v in d_dict_meta_dict["m1_meta_dict"].items() if k != "affine"} | ||
aff_out = d_dict_meta_dict["m1_meta_dict"]["affine"] | ||
self.check(aff_out, m1_aff, ids=False) | ||
self.assertEqual(meta_out, m1_meta) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |