Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LLM] Support dynamic batching for chatglm #2251

Merged
merged 4 commits into from
Oct 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 45 additions & 46 deletions llm/fastdeploy_llm/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -372,7 +372,7 @@ def get_alibi_slopes(num_heads):
alibi_decoder + (1 - inputs["tgt_generation_mask"]) *
paddle.finfo(inputs["tgt_generation_mask"].dtype).min)
attention_mask = inputs["attention_mask"]
tgt_generation_mask = inputs["tgt_generation_mask"]
tgt_generation_mask = inputs["tgt_generation_mask"]


def dy_input_preprocess(inputs):
Expand All @@ -394,70 +394,70 @@ def dy_input_preprocess(inputs):
if args.is_ptuning:
model_id = inputs['model_id'][i]
if "chatglm" in args.architecture:
attention_mask[i, 0, :length, : length+max_prefix_len] = 1
attention_mask[i, 0, :length - 1, length+max_prefix_len - 1] = 0
attention_mask[i, 0, :length, :length + max_prefix_len] = 1
attention_mask[i, 0, :length - 1, length + max_prefix_len -
1] = 0
tgt_pos[i, 0, 0] = paddle.to_tensor(
[length], dtype="int64")

if not model_id:
tgt_generation_mask[i, 0, 0, max_prefix_len : length + max_prefix_len] = paddle.ones(
shape=[1, length], dtype=args.dtype
)
tgt_generation_mask[i, 0, 0, max_prefix_len:length +
max_prefix_len] = paddle.ones(
shape=[1, length],
dtype=args.dtype)
else:
tgt_generation_mask[i, 0, 0, : length + max_prefix_len] = paddle.ones(
shape=[1, length + max_prefix_len], dtype=args.dtype
)
tgt_generation_mask[
i, 0, 0, :length + max_prefix_len] = paddle.ones(
shape=[1, length + max_prefix_len],
dtype=args.dtype)
else:
if "bloom" in args.architecture:
attention_mask[i, :, :length, :length] = paddle.tril(
attention_mask[i, :, :length, :length] = paddle.tril(
paddle.ones(
shape=[length, length], dtype=args.dtype))
shape=[length, length], dtype=args.dtype))
if not model_id:
attention_mask[i, :, :length, :
max_prefix_len] = paddle.zeros(
[1, length, max_prefix_len],
dtype=args.dtype)
tgt_generation_mask[i, 0, 0, max_prefix_len : length + max_prefix_len] = paddle.ones(
shape=[1, length], dtype=args.dtype
)
max_prefix_len] = paddle.zeros(
[1, length, max_prefix_len],
dtype=args.dtype)
tgt_generation_mask[i, 0, 0, max_prefix_len:length +
max_prefix_len] = paddle.ones(
shape=[1, length],
dtype=args.dtype)
else:
attention_mask[i, :, :length, :
max_prefix_len] = paddle.ones(
[1, length, max_prefix_len],
dtype=args.dtype)
tgt_generation_mask[i, 0, 0, :max_prefix_len +
length] = paddle.ones(
shape=[1, max_prefix_len + length],
dtype=args.dtype)
attention_mask[i, :, :length, max_prefix_len:max_prefix_len +
length] = paddle.tril(
paddle.ones(
shape=[length, length],
dtype=args.dtype))
max_prefix_len] = paddle.ones(
[1, length, max_prefix_len],
dtype=args.dtype)
tgt_generation_mask[
i, 0, 0, :max_prefix_len + length] = paddle.ones(
shape=[1, max_prefix_len + length],
dtype=args.dtype)

attention_mask[i, :, :length, max_prefix_len:max_prefix_len
+ length] = paddle.tril(
paddle.ones(
shape=[length, length],
dtype=args.dtype))
position_ids[i, :max_prefix_len] = 0
position_ids[i, max_prefix_len:max_prefix_len + inputs[
"input_ids"].shape[1]] = paddle.arange(inputs["input_ids"]
.shape[1])
"input_ids"].shape[1]] = paddle.arange(inputs[
"input_ids"].shape[1])
if "bloom" in args.architecture:
tgt_generation_mask[i, :, 0, :max_prefix_len +
length] = paddle.ones(
shape=[1, max_prefix_len + length],
dtype=args.dtype)
arange_tensor_encoder[i, :, :length + max_prefix_len] = paddle.arange(
length + max_prefix_len).astype(args.dtype)


tgt_generation_mask[
i, :, 0, :max_prefix_len + length] = paddle.ones(
shape=[1, max_prefix_len + length],
dtype=args.dtype)
arange_tensor_encoder[
i, :, :length + max_prefix_len] = paddle.arange(
length + max_prefix_len).astype(args.dtype)
else:
if "chatglm" in args.architecture:
attention_mask[i, 0, :length, :length] = 1
attention_mask[i, 0, :length, :length] = 1
attention_mask[i, 0, :length - 1, length - 1] = 0
tgt_pos[i, 0, 0] = paddle.to_tensor(
[length], dtype="int64")
tgt_generation_mask[i, 0, 0, :length] = paddle.ones(
shape=[1, length], dtype=args.dtype)
else:

position_ids[i, :length] = paddle.arange(length)
attention_mask[i, 0, :length, :length] = paddle.tril(
paddle.ones(
Expand All @@ -475,7 +475,6 @@ def dy_input_preprocess(inputs):
inputs["position_ids"] = position_ids
inputs["tgt_generation_mask"] = tgt_generation_mask
if "chatglm" in args.architecture:
inputs["tgt_pos"] = tgt_pos
inputs["position_ids"] = generate_position_ids_for_chatglm(enc_length)
if args.is_ptuning:
prefix_caches = []
Expand Down
13 changes: 9 additions & 4 deletions llm/fastdeploy_llm/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -298,9 +298,9 @@ def _update_task_results(self, tasks):
for i in range(len(tasks)):
tasks[i].decode_status["finished_id"] = int(info["finished_ids"][
i])
# TODO JiangJiajun
if self.config.is_arch("chatglm"):
tasks[i].decode_status["tgt_pos"] = int(info["tgt_pos"][i][0])
tasks[i].decode_status["tgt_pos"] = info["tgt_pos"][i].flatten(
).tolist()
else:
tasks[i].decode_status["tgt_pos"] = int(info["tgt_pos"][i])

Expand Down Expand Up @@ -398,9 +398,14 @@ def _add_dynamic_batching_inputs(self, inputs, tasks, stop_nums):
inputs["model_id"].append(tasks[i].model_id)
length = inputs["num_input_tokens"][i]
if tasks[i].status == TaskStatus.DECODING:
tgt_pos.append(tasks[i].decode_status["tgt_pos"])
if self.config.is_arch("chatglm"):
tgt_pos.append(1)
tgt_pos += [
tasks[i].decode_status["seq_lens_decoder"] -
tasks[i].decode_status["step_idx"] + 1,
tasks[i].decode_status["step_idx"]
]
else:
tgt_pos.append(tasks[i].decode_status["tgt_pos"])
sequence_lengths_encoder[i] = 0
sequence_lengths_decoder[i] = tasks[i].decode_status[
"seq_lens_decoder"]
Expand Down
6 changes: 0 additions & 6 deletions llm/fastdeploy_llm/serving/serving_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,6 @@ class ServingModel:
def __init__(self, config):
self.config = config

if self.config.is_arch("chatglm") or self.config.is_arch("bloom"):
logger.warning(
"Dynamic batching will be disabled for model ChatGLM/BLOOM now!"
)
self.config.disable_dynamic_batching = 1

logger.info("=============== Debug Information ===============")
for k, v in self.config.__dict__.items():
logger.info("{:<20}:{:<6}{}".format(k, "", v))
Expand Down
4 changes: 2 additions & 2 deletions llm/fastdeploy_llm/serving/triton_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,11 +122,12 @@ def execute(self, requests):
continue

# 2. validate the deserializing process
task = Task()
try:
task.from_dict(data)
except Exception as e:
error_res = pb_utils.InferenceResponse(error=pb_utils.TritonError(
"There's error while deserializing data from reqeust, error={}".
"There's error while deserializing data from request, error={}".
format(e)))
res_sender = request.get_response_sender()
res_sender.send(
Expand All @@ -135,7 +136,6 @@ def execute(self, requests):
continue

# 3. check if exists task id conflict
task = Task()
if task.task_id is None:
task.task_id = str(uuid.uuid4())
if task.task_id in self.response_handler:
Expand Down