Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Other] Add Function For Aligning Face With Five Points #1124

Merged
merged 9 commits into from
Jan 14, 2023
151 changes: 151 additions & 0 deletions fastdeploy/vision/utils/face_align.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// reference:
// https://github.com/deepinsight/insightface/blob/master/recognition/_tools_/cpp_align/face_align.h
#include "fastdeploy/vision/utils/utils.h"

namespace fastdeploy {
namespace vision {
namespace utils {

cv::Mat MeanAxis0(const cv::Mat& src) {
int num = src.rows;
int dim = src.cols;
cv::Mat output(1, dim, CV_32F);
for (int i = 0; i < dim; i++) {
float sum = 0;
for (int j = 0; j < num; j++) {
sum += src.at<float>(j, i);
}
output.at<float>(0, i) = sum / num;
}
return output;
}

cv::Mat ElementwiseMinus(const cv::Mat& A, const cv::Mat& B) {
cv::Mat output(A.rows, A.cols, A.type());
assert(B.cols == A.cols);
if (B.cols == A.cols) {
for (int i = 0; i < A.rows; i++) {
for (int j = 0; j < B.cols; j++) {
output.at<float>(i, j) = A.at<float>(i, j) - B.at<float>(0, j);
}
}
}
return output;
}

cv::Mat VarAxis0(const cv::Mat& src) {
cv::Mat temp_ = ElementwiseMinus(src, MeanAxis0(src));
cv::multiply(temp_, temp_, temp_);
return MeanAxis0(temp_);
}

int MatrixRank(cv::Mat M) {
cv::Mat w, u, vt;
cv::SVD::compute(M, w, u, vt);
cv::Mat1b non_zero_singular_values = w > 0.0001;
int rank = countNonZero(non_zero_singular_values);
return rank;
}

cv::Mat SimilarTransform(cv::Mat& dst, cv::Mat& src) {
int num = dst.rows;
int dim = dst.cols;
cv::Mat src_mean = MeanAxis0(dst);
cv::Mat dst_mean = MeanAxis0(src);
cv::Mat src_demean = ElementwiseMinus(dst, src_mean);
cv::Mat dst_demean = ElementwiseMinus(src, dst_mean);
cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num);
cv::Mat d(dim, 1, CV_32F);
d.setTo(1.0f);
if (cv::determinant(A) < 0) {
d.at<float>(dim - 1, 0) = -1;
}
cv::Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F);
cv::Mat U, S, V;
cv::SVD::compute(A, S, U, V);
int rank = MatrixRank(A);
if (rank == 0) {
assert(rank == 0);
} else if (rank == dim - 1) {
if (cv::determinant(U) * cv::determinant(V) > 0) {
T.rowRange(0, dim).colRange(0, dim) = U * V;
} else {
int s = d.at<float>(dim - 1, 0) = -1;
d.at<float>(dim - 1, 0) = -1;

T.rowRange(0, dim).colRange(0, dim) = U * V;
cv::Mat diag_ = cv::Mat::diag(d);
cv::Mat twp = diag_ * V; // np.dot(np.diag(d), V.T)
cv::Mat B = cv::Mat::zeros(3, 3, CV_8UC1);
cv::Mat C = B.diag(0);
T.rowRange(0, dim).colRange(0, dim) = U * twp;
d.at<float>(dim - 1, 0) = s;
}
} else {
cv::Mat diag_ = cv::Mat::diag(d);
cv::Mat twp = diag_ * V.t(); // np.dot(np.diag(d), V.T)
cv::Mat res = U * twp; // U
T.rowRange(0, dim).colRange(0, dim) = -U.t() * twp;
}
cv::Mat var_ = VarAxis0(src_demean);
float val = cv::sum(var_).val[0];
cv::Mat res;
cv::multiply(d, S, res);
float scale = 1.0 / val * cv::sum(res).val[0];
T.rowRange(0, dim).colRange(0, dim) =
-T.rowRange(0, dim).colRange(0, dim).t();
cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim]
cv::Mat temp2 = src_mean.t(); // src_mean.T
cv::Mat temp3 = temp1 * temp2; // np.dot(T[:dim, :dim], src_mean.T)
cv::Mat temp4 = scale * temp3;
T.rowRange(0, dim).colRange(dim, dim + 1) = -(temp4 - dst_mean.t());
T.rowRange(0, dim).colRange(0, dim) *= scale;
return T;
}

FASTDEPLOY_DECL std::vector<cv::Mat> AlignFaceWithFivePoints(
cv::Mat& image, FaceDetectionResult& result,
std::vector<std::array<float, 2>> std_landmarks,
std::array<int, 2> output_size) {
FDASSERT(std_landmarks.size() == 5, "The landmarks.size() must be 5.")
FDASSERT(!image.empty(), "The input_image can't be empty.")
std::vector<cv::Mat> output_images(result.boxes.size());
if (result.boxes.empty()) {
FDWARNING << "The result is empty." << std::endl;
return output_images;
}

cv::Mat src(5, 2, CV_32FC1, std_landmarks.data());
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

我看SimilarTransform变换函数并没有对参考点位数量限制为5点,那AlignFaceWithFivePoints是否有肯能写成支持>=5的任意参考点位数量呢?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

我查了一下,一般带关键点的FaceDetection模型分为5点和72点,理论上一样的方法是可以支持其他模型的。但是有个问题是72点的模版我目前没有,后续如果找到了我再提一个PR更新吧

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok,那先实现5点的,这样也没问题

for (int i = 0; i < result.landmarks.size(); i += 5) {
cv::Mat dst(5, 2, CV_32FC1, result.landmarks.data() + i);
cv::Mat m = SimilarTransform(dst, src);
cv::Mat map_matrix;
cv::Rect map_matrix_r = cv::Rect(0, 0, 3, 2);
cv::Mat(m, map_matrix_r).copyTo(map_matrix);
cv::Mat cropped_image_aligned;
cv::warpAffine(image, cropped_image_aligned, map_matrix,
{output_size[0], output_size[1]});
if (cropped_image_aligned.empty()) {
FDWARNING << "croppedImageAligned is empty." << std::endl;
}
output_images.push_back(cropped_image_aligned);
}
return output_images;
}
} // namespace utils
} // namespace vision
} // namespace fastdeploy
19 changes: 14 additions & 5 deletions fastdeploy/vision/utils/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -70,16 +70,25 @@ void SortDetectionResult(DetectionResult* output);
void SortDetectionResult(FaceDetectionResult* result);

// L2 Norm / cosine similarity (for face recognition, ...)
FASTDEPLOY_DECL std::vector<float> L2Normalize(
const std::vector<float>& values);
FASTDEPLOY_DECL std::vector<float>
L2Normalize(const std::vector<float>& values);

FASTDEPLOY_DECL float CosineSimilarity(const std::vector<float>& a,
const std::vector<float>& b,
bool normalized = true);

bool CropImageByBox(Mat& src_im, Mat* dst_im,
const std::vector<float>& box, std::vector<float>* center,
std::vector<float>* scale, const float expandratio = 0.3);
FASTDEPLOY_DECL std::vector<cv::Mat> AlignFaceWithFivePoints(
cv::Mat& image, FaceDetectionResult& result,
std::vector<std::array<float, 2>> std_landmarks = {{38.2946f, 51.6963f},
{73.5318f, 51.5014f},
{56.0252f, 71.7366f},
{41.5493f, 92.3655f},
{70.7299f, 92.2041f}},
std::array<int, 2> output_size = {112, 112});

bool CropImageByBox(Mat& src_im, Mat* dst_im, const std::vector<float>& box,
std::vector<float>* center, std::vector<float>* scale,
const float expandratio = 0.3);

/**
* Function: for keypoint detection model, fine positioning of keypoints in
Expand Down