-
Notifications
You must be signed in to change notification settings - Fork 475
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Other] Add Function For Aligning Face With Five Points (#1124)
* 更新5点人脸对齐的代码 * 更新代码格式 * 解决comment * update example * 更新注释 Co-authored-by: DefTruth <[email protected]>
- Loading branch information
1 parent
1dabfdf
commit c797d31
Showing
6 changed files
with
304 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,14 +1,15 @@ | ||
PROJECT(infer_demo C CXX) | ||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10) | ||
|
||
# 指定下载解压后的fastdeploy库路径 | ||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.") | ||
|
||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) | ||
|
||
# 添加FastDeploy依赖头文件 | ||
|
||
include_directories(${FASTDEPLOY_INCS}) | ||
|
||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc) | ||
# 添加FastDeploy库依赖 | ||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS}) | ||
add_executable(infer_with_face_align_demo ${PROJECT_SOURCE_DIR}/infer_with_face_align.cc) | ||
target_link_libraries(infer_with_face_align_demo ${FASTDEPLOY_LIBS}) | ||
|
||
add_executable(infer_without_face_align_demo ${PROJECT_SOURCE_DIR}/infer_without_face_align.cc) | ||
target_link_libraries(infer_without_face_align_demo ${FASTDEPLOY_LIBS}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
115 changes: 115 additions & 0 deletions
115
examples/vision/facedet/scrfd/cpp/infer_with_face_align.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "fastdeploy/vision.h" | ||
|
||
void CpuInfer(const std::string& model_file, const std::string& image_file) { | ||
auto model = fastdeploy::vision::facedet::SCRFD(model_file); | ||
if (!model.Initialized()) { | ||
std::cerr << "Failed to initialize." << std::endl; | ||
return; | ||
} | ||
|
||
auto im = cv::imread(image_file); | ||
|
||
fastdeploy::vision::FaceDetectionResult res; | ||
if (!model.Predict(&im, &res)) { | ||
std::cerr << "Failed to predict." << std::endl; | ||
return; | ||
} | ||
std::cout << res.Str() << std::endl; | ||
|
||
auto vis_im_list = | ||
fastdeploy::vision::utils::AlignFaceWithFivePoints(im, res); | ||
if (!vis_im_list.empty()) { | ||
cv::imwrite("vis_result.jpg", vis_im_list[0]); | ||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; | ||
} | ||
} | ||
|
||
void GpuInfer(const std::string& model_file, const std::string& image_file) { | ||
auto option = fastdeploy::RuntimeOption(); | ||
option.UseGpu(); | ||
auto model = fastdeploy::vision::facedet::SCRFD(model_file, "", option); | ||
if (!model.Initialized()) { | ||
std::cerr << "Failed to initialize." << std::endl; | ||
return; | ||
} | ||
|
||
auto im = cv::imread(image_file); | ||
|
||
fastdeploy::vision::FaceDetectionResult res; | ||
if (!model.Predict(&im, &res)) { | ||
std::cerr << "Failed to predict." << std::endl; | ||
return; | ||
} | ||
std::cout << res.Str() << std::endl; | ||
|
||
auto vis_im_list = | ||
fastdeploy::vision::utils::AlignFaceWithFivePoints(im, res); | ||
if (!vis_im_list.empty()) { | ||
cv::imwrite("vis_result.jpg", vis_im_list[0]); | ||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; | ||
} | ||
} | ||
|
||
void TrtInfer(const std::string& model_file, const std::string& image_file) { | ||
auto option = fastdeploy::RuntimeOption(); | ||
option.UseGpu(); | ||
option.UseTrtBackend(); | ||
option.SetTrtInputShape("images", {1, 3, 640, 640}); | ||
auto model = fastdeploy::vision::facedet::SCRFD(model_file, "", option); | ||
if (!model.Initialized()) { | ||
std::cerr << "Failed to initialize." << std::endl; | ||
return; | ||
} | ||
|
||
auto im = cv::imread(image_file); | ||
|
||
fastdeploy::vision::FaceDetectionResult res; | ||
if (!model.Predict(&im, &res)) { | ||
std::cerr << "Failed to predict." << std::endl; | ||
return; | ||
} | ||
std::cout << res.Str() << std::endl; | ||
|
||
auto vis_im_list = | ||
fastdeploy::vision::utils::AlignFaceWithFivePoints(im, res); | ||
if (!vis_im_list.empty()) { | ||
cv::imwrite("vis_result.jpg", vis_im_list[0]); | ||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; | ||
} | ||
} | ||
|
||
int main(int argc, char* argv[]) { | ||
if (argc < 4) { | ||
std::cout | ||
<< "Usage: infer_demo path/to/model path/to/image run_option, " | ||
"e.g ./infer_model scrfd_500m_bnkps_shape640x640.onnx ./test.jpeg 0" | ||
<< std::endl; | ||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " | ||
"with gpu; 2: run with gpu and use tensorrt backend." | ||
<< std::endl; | ||
return -1; | ||
} | ||
|
||
if (std::atoi(argv[3]) == 0) { | ||
CpuInfer(argv[1], argv[2]); | ||
} else if (std::atoi(argv[3]) == 1) { | ||
GpuInfer(argv[1], argv[2]); | ||
} else if (std::atoi(argv[3]) == 2) { | ||
TrtInfer(argv[1], argv[2]); | ||
} | ||
return 0; | ||
} |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
// reference: | ||
// https://github.com/deepinsight/insightface/blob/master/recognition/_tools_/cpp_align/face_align.h | ||
#include "fastdeploy/vision/utils/utils.h" | ||
|
||
namespace fastdeploy { | ||
namespace vision { | ||
namespace utils { | ||
|
||
cv::Mat MeanAxis0(const cv::Mat& src) { | ||
int num = src.rows; | ||
int dim = src.cols; | ||
cv::Mat output(1, dim, CV_32F); | ||
for (int i = 0; i < dim; i++) { | ||
float sum = 0; | ||
for (int j = 0; j < num; j++) { | ||
sum += src.at<float>(j, i); | ||
} | ||
output.at<float>(0, i) = sum / num; | ||
} | ||
return output; | ||
} | ||
|
||
cv::Mat ElementwiseMinus(const cv::Mat& A, const cv::Mat& B) { | ||
cv::Mat output(A.rows, A.cols, A.type()); | ||
assert(B.cols == A.cols); | ||
if (B.cols == A.cols) { | ||
for (int i = 0; i < A.rows; i++) { | ||
for (int j = 0; j < B.cols; j++) { | ||
output.at<float>(i, j) = A.at<float>(i, j) - B.at<float>(0, j); | ||
} | ||
} | ||
} | ||
return output; | ||
} | ||
|
||
cv::Mat VarAxis0(const cv::Mat& src) { | ||
cv::Mat temp_ = ElementwiseMinus(src, MeanAxis0(src)); | ||
cv::multiply(temp_, temp_, temp_); | ||
return MeanAxis0(temp_); | ||
} | ||
|
||
int MatrixRank(cv::Mat M) { | ||
cv::Mat w, u, vt; | ||
cv::SVD::compute(M, w, u, vt); | ||
cv::Mat1b non_zero_singular_values = w > 0.0001; | ||
int rank = countNonZero(non_zero_singular_values); | ||
return rank; | ||
} | ||
|
||
cv::Mat SimilarTransform(cv::Mat& dst, cv::Mat& src) { | ||
int num = dst.rows; | ||
int dim = dst.cols; | ||
cv::Mat src_mean = MeanAxis0(dst); | ||
cv::Mat dst_mean = MeanAxis0(src); | ||
cv::Mat src_demean = ElementwiseMinus(dst, src_mean); | ||
cv::Mat dst_demean = ElementwiseMinus(src, dst_mean); | ||
cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num); | ||
cv::Mat d(dim, 1, CV_32F); | ||
d.setTo(1.0f); | ||
if (cv::determinant(A) < 0) { | ||
d.at<float>(dim - 1, 0) = -1; | ||
} | ||
cv::Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F); | ||
cv::Mat U, S, V; | ||
cv::SVD::compute(A, S, U, V); | ||
int rank = MatrixRank(A); | ||
if (rank == 0) { | ||
assert(rank == 0); | ||
} else if (rank == dim - 1) { | ||
if (cv::determinant(U) * cv::determinant(V) > 0) { | ||
T.rowRange(0, dim).colRange(0, dim) = U * V; | ||
} else { | ||
int s = d.at<float>(dim - 1, 0) = -1; | ||
d.at<float>(dim - 1, 0) = -1; | ||
|
||
T.rowRange(0, dim).colRange(0, dim) = U * V; | ||
cv::Mat diag_ = cv::Mat::diag(d); | ||
cv::Mat twp = diag_ * V; // np.dot(np.diag(d), V.T) | ||
cv::Mat B = cv::Mat::zeros(3, 3, CV_8UC1); | ||
cv::Mat C = B.diag(0); | ||
T.rowRange(0, dim).colRange(0, dim) = U * twp; | ||
d.at<float>(dim - 1, 0) = s; | ||
} | ||
} else { | ||
cv::Mat diag_ = cv::Mat::diag(d); | ||
cv::Mat twp = diag_ * V.t(); // np.dot(np.diag(d), V.T) | ||
cv::Mat res = U * twp; // U | ||
T.rowRange(0, dim).colRange(0, dim) = -U.t() * twp; | ||
} | ||
cv::Mat var_ = VarAxis0(src_demean); | ||
float val = cv::sum(var_).val[0]; | ||
cv::Mat res; | ||
cv::multiply(d, S, res); | ||
float scale = 1.0 / val * cv::sum(res).val[0]; | ||
T.rowRange(0, dim).colRange(0, dim) = | ||
-T.rowRange(0, dim).colRange(0, dim).t(); | ||
cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim] | ||
cv::Mat temp2 = src_mean.t(); // src_mean.T | ||
cv::Mat temp3 = temp1 * temp2; // np.dot(T[:dim, :dim], src_mean.T) | ||
cv::Mat temp4 = scale * temp3; | ||
T.rowRange(0, dim).colRange(dim, dim + 1) = -(temp4 - dst_mean.t()); | ||
T.rowRange(0, dim).colRange(0, dim) *= scale; | ||
return T; | ||
} | ||
|
||
std::vector<cv::Mat> AlignFaceWithFivePoints( | ||
cv::Mat& image, FaceDetectionResult& result, | ||
std::vector<std::array<float, 2>> std_landmarks, | ||
std::array<int, 2> output_size) { | ||
FDASSERT(std_landmarks.size() == 5, "The landmarks.size() must be 5.") | ||
FDASSERT(!image.empty(), "The input_image can't be empty.") | ||
std::vector<cv::Mat> output_images(result.boxes.size()); | ||
if (result.boxes.empty()) { | ||
FDWARNING << "The result is empty." << std::endl; | ||
return output_images; | ||
} | ||
|
||
cv::Mat src(5, 2, CV_32FC1, std_landmarks.data()); | ||
for (int i = 0; i < result.landmarks.size(); i += 5) { | ||
cv::Mat dst(5, 2, CV_32FC1, result.landmarks.data() + i); | ||
cv::Mat m = SimilarTransform(dst, src); | ||
cv::Mat map_matrix; | ||
cv::Rect map_matrix_r = cv::Rect(0, 0, 3, 2); | ||
cv::Mat(m, map_matrix_r).copyTo(map_matrix); | ||
cv::Mat cropped_image_aligned; | ||
cv::warpAffine(image, cropped_image_aligned, map_matrix, | ||
{output_size[0], output_size[1]}); | ||
if (cropped_image_aligned.empty()) { | ||
FDWARNING << "croppedImageAligned is empty." << std::endl; | ||
} | ||
output_images.push_back(cropped_image_aligned); | ||
} | ||
return output_images; | ||
} | ||
} // namespace utils | ||
} // namespace vision | ||
} // namespace fastdeploy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters