Skip to content

Commit

Permalink
Merge pull request #2 from eylun/models-azalea-fixes
Browse files Browse the repository at this point in the history
Fixes to Models Lectures (Azalea)
  • Loading branch information
OliverKillane authored Apr 5, 2022
2 parents 2a4dc43 + 21a640f commit 056d608
Show file tree
Hide file tree
Showing 6 changed files with 378 additions and 378 deletions.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -6,89 +6,89 @@
\input{../50003 common.tex}

\begin{document}
\maketitle
\lectlink{https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=14a819ba-3c2a-4eb6-aec0-adcc00b79830}
\maketitle
\lectlink{https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=14a819ba-3c2a-4eb6-aec0-adcc00b79830}

\section*{Structural Induction}
Structural induction is used for reasoning about collections of objects, which are:
\compitem{
\item structured in a well defined way
\item finite but can be arbitrarily large and complex
}
We can use this is reason about:
\compitem{
\item natural numbers
\item data structures (lists, trees, etc)
\item programs (can be large, but are finite)
\item derivations of assertions like $E \Downarrow 4$ (finite trees of axioms and rules)
}
\section*{Structural Induction over Natural Numbers}
\[\mathbb{N} \in Nat ::= zero| succ(\mathbb{N})\]
To prove a property $P(\mathbb{N})$ holds, for every number $N \in Nat$ by induction on structure $\mathbb{N}$:
\begin{itemize}
\bullpara{Base Case}{Prove $P(zero)$}
\bullpara{Inductive Case}{Inductive Case is $P(Succ(K))$ where $P(K)$ holds}
\end{itemize}
For example, we can prove the property:
\[plus(\mathbb{N}, zero) = \mathbb{N}\]
\begin{itemize}
\bullpara{Base Case}{
\\ Show $plus(zero, zero) = zero$
\begin{center}
\begin{tabular}{c r c l c}
(1) & LHS & = & $plus(zero, zero)$ & \\
(2) & & = & $zero$ & (By definition of $plus$) \\
(3) & & = & RHS & (As Required) \\
\end{tabular}
\end{center}}
\bullpara{Inductive Case}{
\\ $N = succ(K)$
\\ Inductive Hypothesis $plus(K, zero) = K$
\\ Show $plus(succ(K), zero) = succ(K)$
\begin{center}
\begin{tabular}{c r c l c}
(1) & LHS & = & $plus(succ(K), zero)$ \\
(2) & & = & $succ(plus(K, zero))$ & (By definition of $plus$) \\
(3) & & = & $succ(K)$ & (By Inductive Hypothesis) \\
(4) & & = & RHS & (As Required) \\
\end{tabular}
\end{center}
}
\end{itemize}
Mathematics induction is a special case of structural induction:
\[P(0) \land [\forall k \in \mathbb{N}. P(k) \Rightarrow P(k + 1)]\]
In the exam you may use $P(0)$ and $P(K+1)$ rather than $P(zero)$ and $P(succ(k))$ to save time.
\section*{Binary Tree Example}
\[bTree \in BinaryTree ::= Node | Branch(bTree, bTree)\]
We can define a function $leaves$:
\[leaves(Node) = 1\]
\[leaves(Branch(T_1, T_2)) = leaves(T_1) + leaves(T_2)\]
Or $branches$:
\[branches(Node) = 0\]
\[branches(Branch(T_1,T_2)) = branches(T_1) + branches(T_2) + 1\]
\sidenote{Exercise}{
Prove By induction that $leaves(T) = branches(T) + 1$
}
\section*{Induction over SimpleExp}
\[E \in SimpleExp ::= n | E + E | E \times E | \dots\]
where $n \in N$.
\subsubsection*{Properties of $\Downarrow$}
\begin{itemize}
\bullpara{Determinacy}{
\\ A simple expression can only evaluate to one answer.
\[E \Downarrow n_1 \land E \Downarrow n_2 \rightarrow n_1 = n_2\]
}
\bullpara{Totality}{
\\ A simple expression evaluates to at least one answer.
\[\forall E \in SimpleExp .\exists n \in \mathbb{N} .[E \Downarrow n]\]
}
\end{itemize}

\section*{Structural Induction}
Structural induction is used for reasoning about collections of objects, which are:
\compitem{
\item structured in a well defined way
\item finite but can be arbitrarily large and complex
}
We can use this is reason about:
\compitem{
\item natural numbers
\item data structures (lists, trees, etc)
\item programs (can be large, but are finite)
\item derivations of assertions like $E \Downarrow 4$ (finite trees of axioms and rules)
}
\section*{Structural Induction over Natural Numbers}
\[\mathbb{N} \in Nat ::= zero| succ(\mathbb{N})\]
To prove a property $P(\mathbb{N})$ holds, for every number $N \in Nat$ by induction on structure $\mathbb{N}$:
\begin{itemize}
\bullpara{Base Case}{Prove $P(zero)$}
\bullpara{Inductive Case}{Inductive Case is $P(Succ(K))$ where $P(K)$ holds}
\end{itemize}
For example, we can prove the property:
\[plus(\mathbb{N}, zero) = \mathbb{N}\]
\begin{itemize}
\bullpara{Base Case}{
\\ Show $plus(zero, zero) = zero$
\begin{center}
\begin{tabular}{c r c l c}
(1) & LHS & = & $plus(zero, zero)$ & \\
(2) & & = & $zero$ & (By definition of $plus$) \\
(3) & & = & RHS & (As Required) \\
\end{tabular}
\end{center}}
\bullpara{Inductive Case}{
\\ $N = succ(K)$
\\ Inductive Hypothesis $plus(K, zero) = K$
\\ Show $plus(succ(K), zero) = succ(K)$
\begin{center}
\begin{tabular}{c r c l c}
(1) & LHS & = & $plus(succ(K), zero)$ \\
(2) & & = & $succ(plus(K, zero))$ & (By definition of $plus$) \\
(3) & & = & $succ(K)$ & (By Inductive Hypothesis) \\
(4) & & = & RHS & (As Required) \\
\end{tabular}
\end{center}
}
\end{itemize}
Mathematics induction is a special case of structural induction:
\[P(0) \land [\forall k \in \mathbb{N}. P(k) \Rightarrow P(k + 1)]\]
In the exam you may use $P(0)$ and $P(K+1)$ rather than $P(zero)$ and $P(succ(k))$ to save time.
\section*{Binary Tree Example}
\[bTree \in BinaryTree ::= Node | Branch(bTree, bTree)\]
We can define a function $leaves$:
\[leaves(Node) = 1\]
\[leaves(Branch(T_1, T_2)) = 1 + leaves(T_1) + leaves(T_2)\]
Or $branches$:
\[branches(Node) = 0\]
\[branches(Branch(T_1,T_2)) = branches(T_1) + branches(T_2)\]
\sidenote{Exercise}{
Prove By induction that $leaves(T) = branches(T) + 1$
}
\section*{Induction over SimpleExp}
\[E \in SimpleExp ::= n | E + E | E \times E | \dots\]
where $n \in N$.
\subsubsection*{Properties of $\Downarrow$}
\begin{itemize}
\bullpara{Determinacy}{
\\ A simple expression can only evaluate to one answer.
\[E \Downarrow n_1 \land E \Downarrow n_2 \rightarrow n_1 = n_2\]
}
\bullpara{Totality}{
\\ A simple expression evaluates to at least one answer.
\[\forall E \in SimpleExp .\exists n \in \mathbb{N} .[E \Downarrow n]\]
}
\end{itemize}








\end{document}
Binary file not shown.
Loading

0 comments on commit 056d608

Please sign in to comment.