Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sl/cuda opt argmax #323

Merged
merged 3 commits into from
Nov 21, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
cuda : optimize argmax
  • Loading branch information
slaren committed Nov 21, 2024
commit 35386e89043a7a2b1d182c453c15ac92c15736bd
92 changes: 51 additions & 41 deletions ggml/src/ggml-cuda/argmax.cu
Original file line number Diff line number Diff line change
@@ -1,57 +1,68 @@
#include "common.cuh"
#include <algorithm>
#include <cstdint>

#include "argmax.cuh"
#include "common.cuh"
#include "sum.cuh"

#include <cstdint>
static __global__ void argmax_f32(const float * x, int32_t * dst, const int64_t ncols, const int64_t nrows) {
const int64_t row = blockIdx.x;

static __global__ void argmax_f32(
const float * x, int32_t * dst, const int64_t ncols, const int64_t nrows) {
float maxval = -FLT_MAX;
int argmax = -1;
const float * rowx = x + row * ncols;

int argmax_thread = 0;
const int64_t row0 = (int64_t)blockIdx.x*WARP_SIZE;
for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) {
const float val = rowx[col];
if (val > maxval) {
maxval = val;
argmax = col;
}
}

#pragma unroll
for (int64_t row1 = 0; row1 < WARP_SIZE; ++row1) {
const int64_t row = row0 + row1;

if (row >= nrows) {
break;
for (int offset = 16; offset > 0; offset >>= 1) {
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
if (val > maxval) {
maxval = val;
argmax = col;
}
}

float maxval = -FLT_MAX;
int argmax = -1;

for (int32_t col = threadIdx.x; col < ncols; col += WARP_SIZE) {
const float val = x[row*ncols + col];
const int bigger = val > maxval;
const int not_bigger = bigger ^ 0x00000001;

maxval = maxval*not_bigger + val*bigger;
argmax = argmax*not_bigger + col*bigger;
const int n_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
const int warp_id = threadIdx.x / WARP_SIZE;
if (n_warps > 1) {
constexpr int max_warps = 1024 / WARP_SIZE;
__shared__ float shared_maxval[max_warps];
__shared__ int shared_argmax[max_warps];
if (lane_id == 0) {
shared_maxval[warp_id] = maxval;
shared_argmax[warp_id] = argmax;
}

__syncthreads();

if (warp_id == 0 && lane_id < n_warps) {
maxval = shared_maxval[lane_id];
argmax = shared_argmax[lane_id];
const unsigned int mask = (1 << n_warps) - 1;
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, mask, WARP_SIZE);
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, mask, WARP_SIZE);
const int bigger = val > maxval;
const int not_bigger = bigger ^ 0x00000001;

maxval = maxval*not_bigger + val*bigger;
argmax = argmax*not_bigger + col*bigger;
for (int offset = 16; offset > 0; offset >>= 1) {
const float val = __shfl_xor_sync(mask, maxval, offset, WARP_SIZE);
const int col = __shfl_xor_sync(mask, argmax, offset, WARP_SIZE);
if (val > maxval) {
maxval = val;
argmax = col;
}
}
}

const int store = row1 == threadIdx.x;
argmax_thread += store*argmax;
}

const int row = row0 + threadIdx.x;

if (row >= nrows) {
return;
if (warp_id == 0 && lane_id == 0) {
dst[row] = argmax;
}

dst[row] = argmax_thread;
}

void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
Expand All @@ -70,9 +81,8 @@ void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

cudaStream_t stream = ctx.stream();

const int64_t num_blocks = (nrows + WARP_SIZE - 1) / WARP_SIZE;

const dim3 blocks_dim(WARP_SIZE, 1, 1);
const int64_t num_blocks = nrows;
const dim3 blocks_dim(std::min<int64_t>(ne00, 1024), 1, 1);
const dim3 blocks_num(num_blocks, 1, 1);

argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00, nrows);
Expand Down
30 changes: 15 additions & 15 deletions ggml/src/ggml-cuda/common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -180,26 +180,26 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
for (int offset = 16; offset > 0; offset >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
}

static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
for (int offset = 16; offset > 0; offset >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
}

static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
for (int offset = 16; offset > 0; offset >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, offset, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, offset, 32);
}
return a;
}
Expand All @@ -209,16 +209,16 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {

#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
for (int offset = 16; offset > 0; offset >>= 1) {
const half2 a_other = __shfl_xor_sync(0xffffffff, a, offset, 32);
reinterpret_cast<half&>(a.x) += __low2half(a_other);
reinterpret_cast<half&>(a.y) += __high2half(a_other);
}
return a;
#else
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
for (int offset = 16; offset > 0; offset >>= 1) {
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, 32));
}
return a;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
Expand All @@ -231,8 +231,8 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {

static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
for (int offset = 16; offset > 0; offset >>= 1) {
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
}
return x;
}
Expand Down Expand Up @@ -275,8 +275,8 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
for (int offset = 16; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
}
return x;
#else
Expand Down
8 changes: 4 additions & 4 deletions ggml/src/ggml-cuda/quantize.cu
Original file line number Diff line number Diff line change
Expand Up @@ -69,8 +69,8 @@ static __global__ void quantize_mmq_q8_1(

// Exchange max. abs. value between vals_per_scale/4 threads.
#pragma unroll
for (int mask = vals_per_scale/8; mask > 0; mask >>= 1) {
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, WARP_SIZE));
for (int offset = vals_per_scale/8; offset > 0; offset >>= 1) {
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, offset, WARP_SIZE));
}

float sum;
Expand All @@ -79,8 +79,8 @@ static __global__ void quantize_mmq_q8_1(

// Exchange calculate sum across vals_per_sum/4 threads.
#pragma unroll
for (int mask = vals_per_sum/8; mask > 0; mask >>= 1) {
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, WARP_SIZE);
for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
}
}

Expand Down
29 changes: 29 additions & 0 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1155,6 +1155,26 @@ struct test_argmax : public test_case {
return out;
}

void initialize_tensors(ggml_context * ctx) override {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_F32) {
// initialize with unique values to avoid ties
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<float> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
}
} else {
init_tensor_uniform(t);
}
}
}

double max_nmse_err() override {
return 0.0;
}
Expand Down Expand Up @@ -3441,6 +3461,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));

test_cases.emplace_back(new test_argmax());
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));

test_cases.emplace_back(new test_count_equal());

for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
Expand Down Expand Up @@ -3831,6 +3856,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));

test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));

for (int bs : {1, 512}) {
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
Expand Down