Skip to content

Commit

Permalink
CUDA: use mma PTX instructions for FlashAttention
Browse files Browse the repository at this point in the history
  • Loading branch information
JohannesGaessler committed Feb 1, 2025
1 parent 53debe6 commit 60958f6
Show file tree
Hide file tree
Showing 28 changed files with 2,037 additions and 997 deletions.
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -596,7 +596,7 @@ ifdef GGML_RPC
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
endif # GGML_RPC

OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-mma*.cu))
OBJ_CUDA_TMPL += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/mmq*.cu))

ifdef GGML_CUDA_FA_ALL_QUANTS
Expand Down
2 changes: 1 addition & 1 deletion ggml/include/ggml.h
Original file line number Diff line number Diff line change
Expand Up @@ -1775,7 +1775,7 @@ extern "C" {
struct ggml_tensor * a,
int k);

#define GGML_KQ_MASK_PAD 32
#define GGML_KQ_MASK_PAD 64

// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
Expand Down
2 changes: 1 addition & 1 deletion ggml/src/ggml-cuda/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ if (CUDAToolkit_FOUND)
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")

file(GLOB GGML_SOURCES_CUDA "*.cu")
file(GLOB SRCS "template-instances/fattn-wmma*.cu")
file(GLOB SRCS "template-instances/fattn-mma*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "template-instances/mmq*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
Expand Down
6 changes: 4 additions & 2 deletions ggml/src/ggml-cuda/common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ typedef float2 dfloat2;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA

#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define INT8_MMA_AVAILABLE
#define NEW_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING

#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
Expand All @@ -159,11 +159,13 @@ static constexpr bool fast_fp16_available(const int cc) {
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
}

// Any FP16 tensor cores are available.
static constexpr bool fp16_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
}

static constexpr bool int8_mma_available(const int cc) {
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
static constexpr bool new_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
}

Expand Down
179 changes: 154 additions & 25 deletions ggml/src/ggml-cuda/fattn-common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -516,6 +516,104 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
nullptr;
}

template<int D, int ncols, int KQ_stride> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);

const int iter_k = ne11 / KQ_stride;
const int iter_j = (ne01 + (ncols - 1)) / ncols;

const int bidx0 = blockIdx.x;

const int kbc0 = (bidx0 + 0)*iter_k*iter_j*ne02 / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*iter_k*iter_j*ne02 / gridDim.x;

const bool did_not_have_any_data = kbc0 == kbc0_stop;
const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
const bool did_not_write_last = kbc0/iter_k == kbc0_stop/iter_k && kbc0_stop % iter_k != 0;
if (did_not_have_any_data || wrote_beginning_of_tile || did_not_write_last) {
return;
}

const int channel = kbc0 / (iter_k*iter_j);
const int jt = (kbc0 - channel*iter_k*iter_j) / iter_k;

dst += jt*ncols*ne02*D + channel*D;

// Load the partial result that needs a fixup:
float dst_val[ncols] = {0.0f};
float max_val[ncols] = {0.0f};
float rowsum[ncols] = {0.0f};
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (jt*ncols + j >= ne01) {
break;
}
dst_val[j] = dst[j*ne02*D + threadIdx.x];

const float2 tmp = dst_fixup[bidx0*ncols + j];
max_val[j] = tmp.x;
rowsum[j] = tmp.y;
}

// Iterate over previous blocks and compute the combined results.
// All CUDA blocks that get here must have a previous block that needs a fixup.
int bidx = bidx0 - 1;
int kbc_stop = kbc0;
while(true) {
const int kbc = bidx*iter_k*iter_j*ne02 / gridDim.x;
if (kbc == kbc_stop) { // Did not have any data.
bidx--;
kbc_stop = kbc;
continue;
}

#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (jt*ncols + j >= ne01) {
break;
}
const float dst_add = dst_fixup_data[bidx*ncols*D + j*D + threadIdx.x];

const float2 tmp = dst_fixup[(gridDim.x + bidx)*ncols + j];

// Scale the current and new value accumulators depending on the max. values.
const float max_val_new = fmaxf(max_val[j], tmp.x);

const float diff_val = max_val[j] - max_val_new;
const float diff_add = tmp.x - max_val_new;

const float scale_val = diff_val >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_val) : 0.0f;
const float scale_add = diff_add >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_add) : 0.0f;

dst_val[j] = scale_val*dst_val[j] + scale_add*dst_add;
rowsum[j] = scale_val*rowsum[j] + scale_add*tmp.y;

max_val[j] = max_val_new;
}

// If this block started in a previous tile we are done and don't need to combine additional partial results.
if (kbc % iter_k == 0 || kbc/iter_k < kbc0/iter_k) {
break;
}
bidx--;
kbc_stop = kbc;
}

// Write back final result:
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (jt*ncols + j >= ne01) {
return;
}
dst[j*ne02*D + threadIdx.x] = dst_val[j] / rowsum[j];
}
}

template<int D, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
Expand Down Expand Up @@ -581,10 +679,11 @@ static void on_no_fattn_vec_case(const int D) {
}
}

template <int D, int parallel_blocks>
// parallel_blocks == 0 is stream-k decomposition
template <int D, int cols_per_block, int parallel_blocks, int KQ_stride>
void launch_fattn(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V
const int nwarps, const size_t nbytes_shared, const bool need_f16_K, const bool need_f16_V
) {
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
Expand All @@ -603,20 +702,23 @@ void launch_fattn(

GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");

GGML_ASSERT(Q->ne[3] == 1);

ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;

ggml_cuda_pool_alloc<half> K_f16(pool);
ggml_cuda_pool_alloc<half> V_f16(pool);
ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);

char * K_data = (char *) K->data;
const char * K_data = (const char *) K->data;
size_t nb11 = K->nb[1];
size_t nb12 = K->nb[2];
size_t nb13 = K->nb[3];

char * V_data = (char *) V->data;
const char * V_data = (const char *) V->data;
size_t nb21 = V->nb[1];
size_t nb22 = V->nb[2];
size_t nb23 = V->nb[3];
Expand Down Expand Up @@ -649,39 +751,60 @@ void launch_fattn(
nb23 = nb23*bs*sizeof(half)/ts;
}

if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
}
const int ntiles_x = ((Q->ne[1] + cols_per_block - 1) / cols_per_block);
const int ntiles_total = ntiles_x*Q->ne[2]*Q->ne[3];

const dim3 block_dim(WARP_SIZE, nwarps, 1);
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
const int shmem = 0;
dim3 blocks_num;
if (parallel_blocks == 0) {
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
const int tiles_nwaves = (ntiles_total - nsm - 1) / nsm;
const bool tiles_inefficient = 3*nsm < 2*tiles_nwaves*ntiles_total;
const bool short_context = K->ne[1] < 4096;

const int nblocks_stream_k = 2*nsm;

blocks_num.x = short_context && !tiles_inefficient ? ntiles_total : nblocks_stream_k;
blocks_num.y = 1;
blocks_num.z = 1;

dst_tmp_meta.alloc(blocks_num.x*cols_per_block * (2*2 + D) * sizeof(float));
} else {
blocks_num.x = parallel_blocks*ntiles_x;
blocks_num.y = Q->ne[2];
blocks_num.z = Q->ne[3];

if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
}
}


float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;

memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
memcpy(&scale, (const float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));

if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}

const uint32_t n_head = Q->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const uint32_t n_head_log2 = 1u << uint32_t(floorf(log2f(float(n_head))));

const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);

fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
(const char *) Q->data,
K_data,
V_data,
mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
(parallel_blocks) > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
Expand All @@ -693,16 +816,22 @@ void launch_fattn(
);
CUDA_CHECK(cudaGetLastError());

if ((parallel_blocks) == 1) {
return;
}
if constexpr (parallel_blocks == 0) {
if (blocks_num.x % ntiles_total != 0) { // Fixup is only needed if the SMs work on fractional tiles.
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine = blocks_num;

const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
const int shmem_combine = 0;
flash_attn_stream_k_fixup<D, cols_per_block, KQ_stride>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
}
} else if constexpr (parallel_blocks > 1) {
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);

flash_attn_combine_results<D, parallel_blocks>
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
flash_attn_combine_results<D, parallel_blocks>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
}
CUDA_CHECK(cudaGetLastError());
}
Loading

0 comments on commit 60958f6

Please sign in to comment.