Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: constant product amm contract #85

Merged
merged 8 commits into from
Nov 3, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
feat: constant product amm contract
  • Loading branch information
julio4 committed Nov 3, 2023
commit 8d0cd77130985b8bfe6bc597d07cb3bfb83b3a80
1 change: 1 addition & 0 deletions listings/ch02-applications/constant_amm/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
target
8 changes: 8 additions & 0 deletions listings/ch02-applications/constant_amm/Scarb.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
[package]
name = "constant_amm"
version = "0.1.0"

[dependencies]
starknet = ">=2.2.0"

[[target.starknet-contract]]
269 changes: 269 additions & 0 deletions listings/ch02-applications/constant_amm/src/constant_amm.cairo
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
use starknet::ContractAddress;

// In order to make contract calls within our Vault,
// we need to have the interface of the remote ERC20 contract defined to import the Dispatcher.
#[starknet::interface]
trait IERC20<TContractState> {
fn name(self: @TContractState) -> felt252;
fn symbol(self: @TContractState) -> felt252;
fn decimals(self: @TContractState) -> u8;
fn total_supply(self: @TContractState) -> u256;
fn balance_of(self: @TContractState, account: ContractAddress) -> u256;
fn allowance(self: @TContractState, owner: ContractAddress, spender: ContractAddress) -> u256;
fn transfer(ref self: TContractState, recipient: ContractAddress, amount: u256) -> bool;
fn transfer_from(
ref self: TContractState, sender: ContractAddress, recipient: ContractAddress, amount: u256
) -> bool;
fn approve(ref self: TContractState, spender: ContractAddress, amount: u256) -> bool;
}

#[starknet::contract]
mod ConstantAmm {
use super::{IERC20Dispatcher, IERC20DispatcherTrait};
use starknet::{ContractAddress, get_caller_address, get_contract_address};
use integer::u256_sqrt;


#[storage]
struct Storage {
token0: IERC20Dispatcher,
token1: IERC20Dispatcher,
reserve0: u256,
reserve1: u256,
total_supply: u256,
balance_of: LegacyMap::<ContractAddress, u256>
}

#[constructor]
fn constructor(ref self: ContractState, token0: ContractAddress, token1: ContractAddress) {
self.token0.write(IERC20Dispatcher { contract_address: token0 });
self.token1.write(IERC20Dispatcher { contract_address: token1 });
}

#[generate_trait]
impl PrivateFunctions of PrivateFunctionsTrait {
fn _mint(ref self: ContractState, to: ContractAddress, amount: u256) {
self.balance_of.write(to, self.balance_of.read(to) + amount);
self.total_supply.write(self.total_supply.read() + amount);
}

fn _burn(ref self: ContractState, from: ContractAddress, amount: u256) {
self.balance_of.write(from, self.balance_of.read(from) - amount);
self.total_supply.write(self.total_supply.read() - amount);
}

fn _update(ref self: ContractState, reserve0: u256, reserve1: u256) {
self.reserve0.write(reserve0);
self.reserve1.write(reserve1);
}

#[inline(always)]
fn select_token(self: @ContractState, token: ContractAddress) -> bool {
assert(
token == self.token0.read().contract_address
|| token == self.token1.read().contract_address,
'invalid token'
);
token == self.token0.read().contract_address
}

#[inline(always)]
fn min(x: u256, y: u256) -> u256 {
if (x <= y) {
x
} else {
y
}
}
}

#[external(v0)]
#[generate_trait]
impl ConstantAmm of IConstantAmm {
fn swap(ref self: ContractState, token_in: ContractAddress, amount_in: u256) -> u256 {
assert(amount_in > 0, 'amount in = 0');
let is_token0: bool = self.select_token(token_in);

let (token0, token1): (IERC20Dispatcher, IERC20Dispatcher) = (
self.token0.read(), self.token1.read()
);
let (reserve0, reserve1): (u256, u256) = (self.reserve0.read(), self.reserve1.read());
let (
token_in, token_out, reserve_in, reserve_out
): (IERC20Dispatcher, IERC20Dispatcher, u256, u256) =
if (is_token0) {
(token0, token1, reserve0, reserve1)
} else {
(token1, token0, reserve1, reserve0)
};

let caller = get_caller_address();
let this = get_contract_address();
token_in.transfer_from(caller, this, amount_in);

// How much dy for dx?
// xy = k
// (x + dx)(y - dy) = k
// y - dy = k / (x + dx)
// y - k / (x + dx) = dy
// y - xy / (x + dx) = dy
// (yx + ydx - xy) / (x + dx) = dy
// ydx / (x + dx) = dy
// 0.3% fee

let amount_in_with_fee = (amount_in * 997) / 1000;
let amount_out = (reserve_out * amount_in_with_fee) / (reserve_in + amount_in_with_fee);

token_out.transfer(caller, amount_out);

self._update(self.token0.read().balance_of(this), self.token1.read().balance_of(this));
amount_out
}

fn add_liquidity(ref self: ContractState, amount0: u256, amount1: u256) -> u256 {
let caller = get_caller_address();
let this = get_contract_address();
let (token0, token1): (IERC20Dispatcher, IERC20Dispatcher) = (
self.token0.read(), self.token1.read()
);

token0.transfer_from(caller, this, amount0);
token1.transfer_from(caller, this, amount1);

// How much dx, dy to add?
//
// xy = k
// (x + dx)(y + dy) = k'
//
// No price change, before and after adding liquidity
// x / y = (x + dx) / (y + dy)
//
// x(y + dy) = y(x + dx)
// x * dy = y * dx
//
// x / y = dx / dy
// dy = y / x * dx
let (reserve0, reserve1): (u256, u256) = (self.reserve0.read(), self.reserve1.read());
if (reserve0 > 0 || reserve1 > 0) {
assert(reserve0 * amount1 == reserve1 * amount0, 'x / y != dx / dy');
}

// How much shares to mint?
//
// f(x, y) = value of liquidity
// We will define f(x, y) = sqrt(xy)
//
// L0 = f(x, y)
// L1 = f(x + dx, y + dy)
// T = total shares
// s = shares to mint
//
// Total shares should increase proportional to increase in liquidity
// L1 / L0 = (T + s) / T
//
// L1 * T = L0 * (T + s)
//
// (L1 - L0) * T / L0 = s

// Claim
// (L1 - L0) / L0 = dx / x = dy / y
//
// Proof
// --- Equation 1 ---
// (L1 - L0) / L0 = (sqrt((x + dx)(y + dy)) - sqrt(xy)) / sqrt(xy)
//
// dx / dy = x / y so replace dy = dx * y / x
//
// --- Equation 2 ---
// Equation 1 = (sqrt(xy + 2ydx + dx^2 * y / x) - sqrt(xy)) / sqrt(xy)
//
// Multiply by sqrt(x) / sqrt(x)
// Equation 2 = (sqrt(x^2y + 2xydx + dx^2 * y) - sqrt(x^2y)) / sqrt(x^2y)
// = (sqrt(y)(sqrt(x^2 + 2xdx + dx^2) - sqrt(x^2)) / (sqrt(y)sqrt(x^2))
// sqrt(y) on top and bottom cancels out
//
// --- Equation 3 ---
// Equation 2 = (sqrt(x^2 + 2xdx + dx^2) - sqrt(x^2)) / (sqrt(x^2)
// = (sqrt((x + dx)^2) - sqrt(x^2)) / sqrt(x^2)
// = ((x + dx) - x) / x
// = dx / x
// Since dx / dy = x / y,
// dx / x = dy / y
//
// Finally
// (L1 - L0) / L0 = dx / x = dy / y
let total_supply = self.total_supply.read();
let shares = if (total_supply == 0) {
u256_sqrt(amount0 * amount1).into()
} else {
PrivateFunctions::min(
amount0 * total_supply / reserve0, amount1 * total_supply / reserve1
)
};
assert(shares > 0, 'shares = 0');
self._mint(caller, shares);

self._update(self.token0.read().balance_of(this), self.token1.read().balance_of(this));
shares
}

fn remove_liquidity(ref self: ContractState, shares: u256) -> (u256, u256) {
let caller = get_caller_address();
let this = get_contract_address();
let (token0, token1): (IERC20Dispatcher, IERC20Dispatcher) = (
self.token0.read(), self.token1.read()
);

// Claim
// dx, dy = amount of liquidity to remove
// dx = s / T * x
// dy = s / T * y
//
// Proof
// Let's find dx, dy such that
// v / L = s / T
//
// where
// v = f(dx, dy) = sqrt(dxdy)
// L = total liquidity = sqrt(xy)
// s = shares
// T = total supply
//
// --- Equation 1 ---
// v = s / T * L
// sqrt(dxdy) = s / T * sqrt(xy)
//
// Amount of liquidity to remove must not change price so
// dx / dy = x / y
//
// replace dy = dx * y / x
// sqrt(dxdy) = sqrt(dx * dx * y / x) = dx * sqrt(y / x)
//
// Divide both sides of Equation 1 with sqrt(y / x)
// dx = s / T * sqrt(xy) / sqrt(y / x)
// = s / T * sqrt(x^2) = s / T * x
//
// Likewise
// dy = s / T * y

// bal0 >= reserve0
// bal1 >= reserve1
let (bal0, bal1): (u256, u256) = (token0.balance_of(this), token1.balance_of(this));

let total_supply = self.total_supply.read();
let (amount0, amount1): (u256, u256) = (
(shares * bal0) / total_supply, (shares * bal1) / total_supply
);
assert(amount0 > 0 && amount1 > 0, 'amount0 or amount1 = 0');

self._burn(caller, shares);
self._update(bal0 - amount0, bal1 - amount1);

token0.transfer(caller, amount0);
token1.transfer(caller, amount1);
(amount0, amount1)
}
}
}
// TODO: Add tests

1 change: 1 addition & 0 deletions listings/ch02-applications/constant_amm/src/lib.cairo
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
mod constant_amm;