Erfanian, Negar, Santiago Segarra, and Maarten V. de Hoop. "Neural multi-event forecasting on spatio-temporal point processes using probabilistically enriched transformers." (2022).
First clone project in your desired path:
git clone [email protected]:Negar-Erfanian/Neural-spatio-temporal-probabilistic-transformers.git
In ssh command, first pull docker image
docker pull tensorflow/tensorflow:latest-gpu-py3-jupyter
Then launch the container
docker run --user $(id -u):$(id -g) --runtime=nvidia --rm -it -v ~/Neural-spatio-temporal-probabilistic-transformers:/tensorflow/Neural-spatio-temporal-probabilistic-transformers -w /tensorflow/Neural-spatio-temporal-probabilistic-transformers -p 8300:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter
Access the jupyter interface of the container from browser, and launch a terminal from jupyter
pip3 install -r requirements.txt
Test if everything is ok from the jupyter terminal
python3 train.py
Install any missing packages in the error message
If test pass, commit the container from ssh command window
Check container id docker container ls
, assuming it is c3f279d17e0a
Then commit the changes to the image of the same name
docker commit c3f279d17e0a tensorflow/tensorflow:latest-gpu-py3-jupyter
The newly installed python packages are now ready for next time you launch the container.