Skip to content

Latest commit

 

History

History
119 lines (86 loc) · 4.12 KB

MultiLabelClassificationUploadApi.md

File metadata and controls

119 lines (86 loc) · 4.12 KB

nanonets.MultiLabelClassificationUploadApi

All URIs are relative to https://app.nanonet.com/api/v2

Method HTTP request Description
multi_label_classification_upload_files_post POST /MultiLabelClassification/Model/{model_id}/UploadFiles/ Upload training images by File
multi_label_classification_upload_urls_post POST /MultiLabelClassification/Model/{model_id}/UploadUrls/ Upload training images by Urls

multi_label_classification_upload_files_post

multi_label_classification_upload_files_post(data, files, model_id)

Upload training images by File

You can use this endpoint to upload multiple training images using locally stored files and optionally send the corresponding annotations for the images. You will receive the upload status of each file in the response.

Example

from __future__ import print_function
import time
import nanonets
from nanonets.rest import ApiException
from pprint import pprint
# Configure HTTP basic authorization: ApiKey
configuration = nanonets.Configuration()
configuration.username = 'YOUR_USERNAME'
configuration.password = 'YOUR_PASSWORD'

# create an instance of the API class
api_instance = nanonets.MultiLabelClassificationUploadApi(nanonets.ApiClient(configuration))
data = 'data_example' # str | 
files = 'files_example' # file | 
model_id = 'model_id_example' # str | 

try:
    # Upload training images by File
    api_instance.multi_label_classification_upload_files_post(data, files, model_id)
except ApiException as e:
    print("Exception when calling MultiLabelClassificationUploadApi->multi_label_classification_upload_files_post: %s\n" % e)

Parameters

Name Type Description Notes
data str
files file
model_id str

Return type

void (empty response body)

Authorization

ApiKey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json

[Back to top] [Back to API list] [Back to Model list] [Back to README]

multi_label_classification_upload_urls_post

multi_label_classification_upload_urls_post(data, urls, model_id)

Upload training images by Urls

You can use this endpoint to upload multiple training images using urls and optionally send the corresponding annotations for the images. You will receive the upload status of each url in the response.

Example

from __future__ import print_function
import time
import nanonets
from nanonets.rest import ApiException
from pprint import pprint
# Configure HTTP basic authorization: ApiKey
configuration = nanonets.Configuration()
configuration.username = 'YOUR_USERNAME'
configuration.password = 'YOUR_PASSWORD'

# create an instance of the API class
api_instance = nanonets.MultiLabelClassificationUploadApi(nanonets.ApiClient(configuration))
data = 'data_example' # str | 
urls = 'urls_example' # str | 
model_id = 'model_id_example' # str | 

try:
    # Upload training images by Urls
    api_instance.multi_label_classification_upload_urls_post(data, urls, model_id)
except ApiException as e:
    print("Exception when calling MultiLabelClassificationUploadApi->multi_label_classification_upload_urls_post: %s\n" % e)

Parameters

Name Type Description Notes
data str
urls str
model_id str

Return type

void (empty response body)

Authorization

ApiKey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json

[Back to top] [Back to API list] [Back to Model list] [Back to README]