The nvImageCodec is an open-source library of accelerated codecs with unified interface. It is designed as a framework for extension modules which delivers codec plugins.
This nvImageCodec release includes the following key features:
- Unified API for decoding and encoding images
- Batch processing, with variable shape and heterogeneous formats images
- Codec prioritization with automatic fallback
- Builtin parsers for image format detection: jpeg, jpeg2000, tiff, bmp, png, pnm, webp
- Python bindings
- Zero-copy interfaces to CV-CUDA, PyTorch and CuPy
- End-end accelerated sample applications for common image transcoding
Currently there are following native codec extensions:
-
nvjpeg_ext
- Hardware jpeg decoder
- CUDA jpeg decoder
- CUDA lossless jpeg decoder
- CUDA jpeg encoder
-
nvjpeg2k_ext
- CUDA jpeg 2000 decoder (including High Throughput Jpeg2000)
- CUDA jpeg 2000 encoder
-
nvbmp_ext (as an example extension module)
- CPU bmp reader
- CPU bmp writer
-
nvpnm_ext (as an example extension module)
- CPU pnm (ppm, pbm, pgm) writer
Additionally as a fallback there are following 3rd party codec extensions:
-
libturbo-jpeg_ext
- CPU jpeg decoder
-
libtiff_ext
- CPU tiff decoder
-
opencv_ext
- CPU jpeg decoder
- CPU jpeg2k_decoder
- CPU png decoder
- CPU bmp decoder
- CPU pnm decoder
- CPU tiff decoder
- CPU webp decoder
This section describes the recommended dependencies to use nvImageCodec.
- Linux distro:
- x86_64
- Debian 11, 12
- Fedora 39
- RHEL 8, 9
- OpenSUSE 15
- SLES 15
- Ubuntu 20.04, 22.04
- WSL2 Ubuntu 20.04
- arm64-sbsa
- RHEL 8, 9
- SLES 15
- Ubuntu 20.04, 22.04
- aarch64-jetson (CUDA Toolkit >= 12.0)
- Ubuntu 22.04
- x86_64
- Windows
- NVIDIA driver >= 520.56.06
- CUDA Toolkit > = 11.8
- nvJPEG2000 >= 0.8.0
- Python >= 3.8
You can download and install the appropriate built binary packages from the nvImageCodec Developer Page or install nvImageCodec Python from PyPI as it is described below.
CUDA version | Instructions |
---|---|
CUDA 11.x | pip install nvidia-nvimgcodec-cu11 |
CUDA 12.x | pip install nvidia-nvimgcodec-cu12 |
CUDA 12.x (Tegra platforms) | pip install nvidia-nvimgcodec-tegra-cu12 |
You can also install optional dependencies to run the nvjpeg, nvjpeg2k and nvtiff plugins.
To install nvImageCodec with all the optional dependencies, you can do
CUDA version | Instructions |
---|---|
CUDA 11.x | pip install nvidia-nvimgcodec-cu11[all] |
CUDA 12.x | pip install nvidia-nvimgcodec-cu12[all] |
CUDA 12.x (Tegra platforms) | pip install nvidia-nvimgcodec-tegra-cu12[all] |
Alternatively, you can specify a subset of the dependencies: nvjpeg
, nvjpeg2k
, nvtiff
. Here are some examples:
CUDA version | Instructions |
---|---|
nvjpeg2k extension support | pip install nvidia-nvimgcodec-cu11[nvjpeg2k] |
nvjpeg2k and nvtiff extension support | pip install nvidia-nvimgcodec-cu11[nvjpeg2k+nvtiff] |
In the following subsections, you can see how to install those dependencies manually, instead of relying on nvimagecodec's "extra" packages.
If you do not have CUDA Toolkit installed, or you would like install nvJPEG library independently, you can install it manually as a Python package
CUDA version | Instructions |
---|---|
CUDA 11.x | pip install nvidia-nvjpeg-cu11 |
CUDA 12.x | pip install nvidia-nvjpeg-cu12 |
nvJPEG2000 library can be installed in the system, or installed as a Python package. For the latter, follow the instructions below.
CUDA version | Instructions |
---|---|
CUDA 11.x | pip install nvidia-nvjpeg2k-cu11 |
CUDA 12.x | pip install nvidia-nvjpeg2k-cu12 |
CUDA 12.x (Tegra platforms) | pip install nvidia-nvjpeg2k-tegra-cu12 |
Please see also nvJPEG2000 installation documentation for more information.
nvTIFF library can be installed in the system, or installed as a Python package. For the latter, follow the instructions below.
CUDA version | Instructions |
---|---|
CUDA 11.x | pip install nvidia-nvtiff-cu11 |
CUDA 12.x | pip install nvidia-nvtiff-cu12 |
CUDA 12.x (Tegra platforms) | pip install nvidia-nvtiff-tegra-cu12 |
Please see also nvTIFF installation documentation for more information.
nvCOMP library can be installed in the system, or installed as a Python package. For the latter, follow the instructions below. nvCOMP is required if you want to use nvTIFF with images that use Deflate compression.
CUDA version | Instructions |
---|---|
CUDA 11.x | pip install nvidia-nvcomp-cu11 |
CUDA 12.x | pip install nvidia-nvcomp-cu12 |
Please see also nvCOMP installation documentation for more information.
NVIDIA nvImageCodec Documentation
- Linux
- GCC >= 9.4
- cmake >= 3.18
- patchelf >= 0.17.2
- Windows
- Dependencies for extensions. If you would not like to build particular extension you can skip it.
- nvJPEG2000 >= 0.8.0
- libjpeg-turbo >= 2.0.0
- libtiff >= 4.5.0
- opencv >= 4.9.0
- Python packages:
- clang==14.0.1
- wheel
- setuptools
- sphinx_rtd_theme
- breathe
- future
- flake8
- sphinx==4.5.0
Please see also Dockerfiles.
git lfs clone https://github.com/NVIDIA/nvImageCodec.git
cd nvimagecodec
git submodule update --init --recursive --depth 1
mkdir build
cd build
export CUDACXX=nvcc
cmake .. -DCMAKE_BUILD_TYPE=Release
make
To build CV-CUDA samples, additionally CV-CUDA has to be installed and CVCUDA_DIR and NVCV_TYPES_DIR need to point folders with *-config.cmake files. Apart of that, BUILD_CVCUDA_SAMPLES variable must be set to ON.
Open Developer Command Prompt for VS 2022
git lfs clone https://github.com/NVIDIA/nvImageCodec.git
cd nvimagecodec
git submodule update --init --recursive --depth 1
.\externa\build_deps.bat
.\docker\build_helper.bat .\build 12
After succesfully built project, execute below commands.
cd build
cmake --build . --target wheel
From a successfully built project, installers can be generated using cpack:
cd build
cpack --config CPackConfig.cmake -DCMAKE_BUILD_TYPE=Release
This will generate in build directory *.zip or *tar.xz files
tar -xvf nvimgcodec-0.5.0.0-cuda12-x86_64-linux-lib.tar.gz -C /opt/nvidia/
sudo apt-get install -y ./nvimgcodec-0.5.0.0-cuda12-x86_64-linux-lib.deb
pip install nvidia_nvimgcodec_cu12-0.5.0-py3-none-manylinux2014_x86_64.whl
cd build
cmake --install . --config Release --prefix /opt/nvidia/nvimgcodec_<major_cuda_ver>
After execution there should be:
- all extension modules in /opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/extensions (it is default directory for extension discovery)
- libnvimgcodec.so in /opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/lib64
Add directory with libnvimgcodec.so to LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/lib64:$LD_LIBRARY_PATH
Open Developer Command Prompt for VS 2022
cd build
cmake --install . --config Release --prefix "c:\Program Files\nvimgcodec_cuda<major_cuda_ver>"
After execution there should be:
- all extension modules in c:\Program Files\nvimgcodec_cuda<major_cuda_ver>/extensions (it is default directory for extension discovery)
- nvimgcodec_0.dll in c:\Program Files\nvimgcodec_cuda<major_cuda_ver>\bin
Add directory with nvimgcodec_0.dll to PATH
Run CTest to execute L0 and L1 tests
cd build
cmake --install . --config Release --prefix bin
ctest -C Release
Run sample transcoder app tests
cd build
cmake --install . --config Release --prefix bin
cd bin/test
LD_LIBRARY_PATH=$PWD/../lib64 pytest -v test_transcode.py
Run Python API tests
First install python wheel. You would also need to have installed all Python tests dependencies (see Dockerfiles).
pip install nvidia_nvimgcodec_cu12-0.5.0.x-py3-none-manylinux2014_x86_64.whl
Run tests
cd tests
pytest -v ./python
To use nvimagecodec as a dependency in your CMake project, use:
list(APPEND CMAKE_PREFIX_PATH "/opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/") # or the prefix where the package was installed if custom
find_package(nvimgcodec CONFIG REQUIRED)
# Mostly for showing some of the variables defined
message(STATUS "nvimgcodec_FOUND=${nvimgcodec_FOUND}")
message(STATUS "nvimgcodec_INCLUDE_DIR=${nvimgcodec_INCLUDE_DIR}")
message(STATUS "nvimgcodec_LIB_DIR=${nvimgcodec_LIB_DIR}")
message(STATUS "nvimgcodec_BIN_DIR=${nvimgcodec_BIN_DIR}")
message(STATUS "nvimgcodec_LIB=${nvimgcodec_LIB}")
message(STATUS "nvimgcodec_EXTENSIONS_DIR=${nvimgcodec_EXTENSIONS_DIR}")
message(STATUS "nvimgcodec_VERSION=${nvimgcodec_VERSION}")
target_include_directories(<your-target> PUBLIC ${nvimgcodec_INCLUDE_DIR})
target_link_directories(<your-target> PUBLIC ${nvimgcodec_LIB_DIR})
target_link_libraries(<your-target> PUBLIC ${nvimgcodec_LIB})