Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed remaining nvc++ warnings #645

Merged
merged 1 commit into from
Jun 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ MatX support is currently limited to **Linux only** due to the time to test Wind

**Note**: CUDA 12.0.0 through 12.2.0 have an issue that causes building MatX unit tests to show a compiler error or cause a segfault in the compiler. Please use CUDA 11.5-11.8 or CUDA 12.2.1+ with MatX.

MatX is using features in C++17 and the latest CUDA compilers and libraries. For this reason, when running with GPU support, CUDA 11.5 and g++9 or clang 17 or newer is required. You can download the CUDA Toolkit [here](https://developer.nvidia.com/cuda-downloads).
MatX is using features in C++17 and the latest CUDA compilers and libraries. For this reason, when running with GPU support, CUDA 11.5 and g++9, nvc++ 24.5, or clang 17 or newer is required. You can download the CUDA Toolkit [here](https://developer.nvidia.com/cuda-downloads).

MatX has been tested on and supports Pascal, Turing, Volta, Ampere, Ada, and Hopper GPU architectures. Jetson products are supported with Jetpack 5.0 or above.

Expand Down
10 changes: 5 additions & 5 deletions bench/00_operators/operators.cu
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ NVBENCH_BENCH_TYPES(random, NVBENCH_TYPE_AXES(random_types));
template<typename T> T factorial(int N) {
T prod = 1;
for(int i=2; i<=N; i++) {
prod = prod * i;
prod = prod * static_cast<T>(i);
}
return prod;
}
Expand All @@ -99,7 +99,7 @@ void sphericalharmonics(nvbench::state &state, nvbench::type_list<ValueType>)
int l = 5;
int m = 4;
int n = 600;
ValueType dx = M_PI/n;
ValueType dx = static_cast<ValueType>(M_PI/n);

cudaExecutor exec{};
auto col = range<0>({n+1},ValueType(0), ValueType(dx));
Expand All @@ -109,11 +109,11 @@ void sphericalharmonics(nvbench::state &state, nvbench::type_list<ValueType>)

auto Plm = lcollapse<3>(legendre(l, m, cos(theta)));

ValueType a = (2*l+1)*factorial<ValueType>(l-m);
ValueType b = 4*M_PI*factorial<ValueType>(l+m);
ValueType a = static_cast<ValueType>(2*l+1)*factorial<ValueType>(l-m);
ValueType b = static_cast<ValueType>(4*M_PI)*factorial<ValueType>(l+m);
ValueType C = cuda::std::sqrt(a/b);

auto Ylm = C * Plm * exp(cuda::std::complex<ValueType>(0,1)*(m*phi));
auto Ylm = C * Plm * exp(cuda::std::complex<ValueType>(0,1)*(static_cast<ValueType>(m)*phi));
auto [ Xm, Ym, Zm ] = sph2cart(phi, ValueType(M_PI)/2 - theta, abs(real(Ylm)));

// Work around C++17 restriction, structured bindings cannot be captured
Expand Down
4 changes: 2 additions & 2 deletions bench/00_transform/conv.cu
Original file line number Diff line number Diff line change
Expand Up @@ -130,9 +130,9 @@ void conv2d_direct_batch(nvbench::state &state,
flops.set_string("description", "Trillions of operations per second");

if constexpr (is_complex_v<ValueType>) {
flops.set_float64("value", (double)2 * out.Size(2) * out.Size(1) * out.Size(0) * bt.Size(2) * bt.Size(1) * 4 / seconds / 1e12);
flops.set_float64("value", static_cast<double>(2 * out.Size(2) * out.Size(1) * out.Size(0) * bt.Size(2) * bt.Size(1) * 4) / seconds / 1e12);
} else {
flops.set_float64("value", (double)2 * out.Size(2) * out.Size(1) * out.Size(0) * bt.Size(2) * bt.Size(1) / seconds / 1e12);
flops.set_float64("value", static_cast<double>(2 * out.Size(2) * out.Size(1) * out.Size(0) * bt.Size(2) * bt.Size(1)) / seconds / 1e12);
}
}
NVBENCH_BENCH_TYPES(conv2d_direct_batch, NVBENCH_TYPE_AXES(conv_types));
6 changes: 3 additions & 3 deletions bench/00_transform/qr.cu
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,9 @@ void qr_batch(nvbench::state &state,
state.set_cuda_stream(nvbench::make_cuda_stream_view(stream));
cudaExecutor exec{stream};

int batch = state.get_int64("batch");
int m = state.get_int64("rows");
int n = state.get_int64("cols");
int64_t batch = state.get_int64("batch");
int64_t m = state.get_int64("rows");
int64_t n = state.get_int64("cols");

auto A = make_tensor<AType>({batch, m, n});
auto Q = make_tensor<AType>({batch, m, m});
Expand Down
16 changes: 8 additions & 8 deletions bench/00_transform/svd_power.cu
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ void svdpi_batch(nvbench::state &state,
state.set_cuda_stream(nvbench::make_cuda_stream_view(stream));
cudaExecutor exec{stream};

int batch = state.get_int64("batch");
int m = state.get_int64("rows");
int n = state.get_int64("cols");
int64_t batch = state.get_int64("batch");
int64_t m = state.get_int64("rows");
int64_t n = state.get_int64("cols");

int r = std::min(n,m);
int64_t r = std::min(n,m);
auto A = make_tensor<AType>({batch, m, n});
auto U = make_tensor<AType>({batch, m, r});
auto VT = make_tensor<AType>({batch, r, n});
Expand Down Expand Up @@ -68,11 +68,11 @@ void svdbpi_batch(nvbench::state &state,
state.set_cuda_stream(nvbench::make_cuda_stream_view(stream));
cudaExecutor exec{stream};

int batch = state.get_int64("batch");
int m = state.get_int64("rows");
int n = state.get_int64("cols");
int64_t batch = state.get_int64("batch");
int64_t m = state.get_int64("rows");
int64_t n = state.get_int64("cols");

int r = std::min(n,m);
int64_t r = std::min(n,m);
auto A = make_tensor<AType>({batch, m, n});
auto U = make_tensor<AType>({batch, m, r});
auto VT = make_tensor<AType>({batch, r, n});
Expand Down
2 changes: 1 addition & 1 deletion docs_input/build.rst
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ the CPM_ documentation or the documentation for each package for more informatio

System Requirements
-------------------
MatX requires **CUDA 11.5** or higher, and **g++ 9.3+** or **clang 17+** for the host compiler. See the CUDA toolkit documentation
MatX requires **CUDA 11.5** or higher, and **g++ 9.3+**, **clang 17+**, or **nvc++ 24.5** for the host compiler. See the CUDA toolkit documentation
for supported host compilers. Other requirements for optional components are listed below.

.. warning:: Using MatX with an unsupported compiler may result in compiler and/or runtime errors.
Expand Down
7 changes: 0 additions & 7 deletions include/matx/generators/range.h
Original file line number Diff line number Diff line change
Expand Up @@ -60,13 +60,6 @@ namespace matx
else {
return first_ + T(static_cast<T>(idx) * step_);
}

if constexpr (!is_matx_half_v<T>) {
return first_ + T(static_cast<T>(idx) * step_);
}
else {
return first_ + T(static_cast<T>((float)idx) * step_);
}
}
};
}
Expand Down
18 changes: 0 additions & 18 deletions include/matx/operators/repmat.h
Original file line number Diff line number Diff line change
Expand Up @@ -105,15 +105,6 @@ namespace matx
UpdateIndex(tup);
return cuda::std::apply(op_, tup);
}

if constexpr (Rank() != 0) {
auto tup = cuda::std::make_tuple(indices...);
UpdateIndex(tup);
return cuda::std::apply(op_, tup);
}
else {
return op_();
}
}

template <typename... Is>
Expand All @@ -127,15 +118,6 @@ namespace matx
UpdateIndex(tup);
return cuda::std::apply(op_, tup);
}

if constexpr (Rank() != 0) {
auto tup = cuda::std::make_tuple(indices...);
UpdateIndex(tup);
return cuda::std::apply(op_, tup);
}
else {
return op_();
}
}

template <typename ShapeType, typename Executor>
Expand Down
18 changes: 0 additions & 18 deletions include/matx/operators/reverse.h
Original file line number Diff line number Diff line change
Expand Up @@ -74,15 +74,6 @@ namespace matx
cuda::std::get<DIM>(tup) = Size(DIM) - cuda::std::get<DIM>(tup) - 1;
return cuda::std::apply(op_, tup);
}

if constexpr (Rank() != 0) {
auto tup = cuda::std::make_tuple(indices...);
cuda::std::get<DIM>(tup) = Size(DIM) - cuda::std::get<DIM>(tup) - 1;
return cuda::std::apply(op_, tup);
}
else {
return op_();
}
}

template <typename... Is>
Expand All @@ -96,15 +87,6 @@ namespace matx
cuda::std::get<DIM>(tup) = Size(DIM) - cuda::std::get<DIM>(tup) - 1;
return cuda::std::apply(op_, tup);
}

if constexpr (Rank() != 0) {
auto tup = cuda::std::make_tuple(indices...);
cuda::std::get<DIM>(tup) = Size(DIM) - cuda::std::get<DIM>(tup) - 1;
return cuda::std::apply(op_, tup);
}
else {
return op_();
}
}

static __MATX_INLINE__ constexpr __MATX_HOST__ __MATX_DEVICE__ int32_t Rank()
Expand Down
16 changes: 3 additions & 13 deletions include/matx/operators/scalar_ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -496,10 +496,7 @@ template <typename T1, typename T2> struct FModF {
static std::string str(const std::string &str1, const std::string &str2) { return "(" + str1 + "%" + str2 + ")"; }

static __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ auto op(T1 v1, T2 v2) {
return _internal_fmod(v1, v2);

// Unreachable, but required by the compiler
return typename std::invoke_result_t<decltype(op), T1, T2>{0};
return _internal_fmod(v1, v2);
}
};
template <typename T1, typename T2> using FModOp = BinOp<T1, T2, FModF<T1, T2>>;
Expand All @@ -520,10 +517,7 @@ template <typename T1, typename T2> struct Atan2F {
static std::string str(const std::string &str1, const std::string &str2) { return "(" + str1 + "%" + str2 + ")"; }

static __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ auto op(T1 v1, T2 v2) {
return _internal_atan2(v1, v2);

// Unreachable, but required by the compiler
return typename std::invoke_result_t<decltype(op), T1, T2>{0};
return _internal_atan2(v1, v2);
}
};
template <typename T1, typename T2> using Atan2Op = BinOp<T1, T2, Atan2F<T1, T2>>;
Expand Down Expand Up @@ -649,8 +643,6 @@ static __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ auto _internal_isnan(T v1)
} else {
return cuda::std::isnan(static_cast<castType>(v1));
}

return false;
}
template <typename T>
struct IsNan {
Expand All @@ -675,9 +667,7 @@ static __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ auto _internal_isinf(T v1)
return cuda::std::isinf(static_cast<typename castType::value_type>(v1.real())) || cuda::std::isinf(static_cast<typename castType::value_type>(v1.imag()));
} else {
return cuda::std::isinf(static_cast<castType>(v1));
}

return false;
}
}
template <typename T>
struct IsInf {
Expand Down