Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update pytests #27

Merged
merged 2 commits into from
Oct 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ geo_inference = GeoInference(

# Perform feature extraction on a TIFF image
image_path = "/path/to/image.tif"
bands_requested = [1,2,3]
bands_requested = "1,2,3"
patch_size = 1024
workers = 0
patch_size = 512
Expand Down
5 changes: 2 additions & 3 deletions geo_inference/geo_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,9 +92,8 @@ def __init__(
transformer_rotate: bool = False,
):
self.work_dir: Path = get_directory(work_dir)
self.device = (
device if device == "cpu" else select_model_device(gpu_id, multi_gpu)
)
self.device = select_model_device(gpu_id, multi_gpu, device)

self.model = torch.jit.load(
get_model(
model_path_or_url=model,
Expand Down
53 changes: 50 additions & 3 deletions geo_inference/utils/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,9 +196,56 @@ def get_model(model_path_or_url: str, work_dir: Path) -> Path:
raise ValueError("Invalid model path")


def select_model_device(gpu_id: int, multi_gpu: bool):
device = "cpu"
if torch.cuda.is_available():
def select_model_device(gpu_id: int, multi_gpu: bool, device: str="cpu"):
"""
Selects an appropriate GPU device based on memory usage and GPU utilization.

The function checks if a GPU is available using `torch.cuda.is_available()`
and then evaluates either a single GPU or multiple GPUs based on the provided `multi_gpu` flag.
It analyzes memory and utilization for each available GPU, and selects a device that has memory
and utilization usage below a specific threshold.

Parameters:
-----------
multi_gpu : bool
If True, checks multiple GPUs and selects one with suitable memory and utilization stats.
gpu_id : int
The index of the GPU to evaluate when not in multi-GPU mode.
device : str
The device string representing the current device (e.g., "cpu" or "cuda:X").

Returns:
--------
device : str
The updated device string, specifying which GPU to use (e.g., "cuda:0", "cuda:1", etc.),
or retains the original device (e.g., "cpu") if no suitable GPU is found.

Logic:
------
1. If a GPU is available and the device is not set to "cpu":
- **Single GPU Mode (multi_gpu=False)**:
- Checks the specified `gpu_id`'s memory and utilization.
- If the memory usage is below 70% and GPU utilization is below 70%, sets the device to the appropriate GPU.
- **Multi-GPU Mode (multi_gpu=True)**:
- Iterates over all available GPUs.
- For each GPU, checks memory usage and utilization.
- Selects the first GPU that has memory and utilization below the 70% threshold.
2. If no GPU meets the criteria, retains the current device (usually "cpu").

Note:
-----
- Memory is calculated as the difference between total and available memory (via `torch.cuda.mem_get_info`).
- Both memory and GPU utilization thresholds are set to 70%.
- The GPU utilization is retrieved via `torch.cuda.utilization()`.

Exceptions:
-----------
- Assumes that GPU-related PyTorch functions like `torch.cuda.utilization()` and `torch.cuda.mem_get_info()` are available and accessible.
- GPU-related functions will fail if run in an environment without CUDA support.

"""

if torch.cuda.is_available() and device != "cpu":
if not multi_gpu:
res = {"gpu": torch.cuda.utilization(gpu_id)}
torch_cuda_mem = torch.cuda.mem_get_info(gpu_id)
Expand Down
9 changes: 9 additions & 0 deletions geo_inference/utils/polygon.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,10 @@ def gdf_to_yolo(geojson_path="", mask_path="", output_path="", column='value',
except pyogrio.errors.DataSourceError as e:
logger.error(f"Error reading GeoJSON file: {geojson_path}: {e}")
return

if len(gdf) == 0:
logger.info(f"No vector to write to yolo file.")
return

[x0, y0, x1, y1] = [0, 0, im_size[0], im_size[1]]
out_coords = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]]
Expand Down Expand Up @@ -196,6 +200,11 @@ def geojson2coco(image_src, label_src, output_path=None, category_attribute="val
except pyogrio.errors.DataSourceError as e:
logger.error(f"Error reading GeoJSON file: {label_src}: {e}")
return

if len(curr_gdf) == 0:
logger.info(f"No vector to write to coco file.")
return

curr_gdf['label_fname'] = label_src
curr_gdf['image_fname'] = ''
curr_gdf['image_id'] = 1
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ version = {file = ["VERSION"]}
dev = ["black", "bumpver", "isort", "pip-tools", "pytest"]

[project.urls]
Homepage = "https://github.com/valhassan/geo-inference"
Homepage = "https://github.com/NRCan/geo-inference"

[project.scripts]
geo_inference = "geo_inference.geo_inference:main"
Expand Down
Binary file not shown.
Binary file not shown.
Binary file removed tests/data/inference/test_model/test_model.pt
Binary file not shown.
68 changes: 45 additions & 23 deletions tests/test_geo_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,49 +5,71 @@
from geo_inference.geo_inference import GeoInference
from pathlib import Path


@pytest.fixture
def test_data_dir():
return Path(__file__).parent / "data"


class TestGeoInference:

@pytest.fixture
def geo_inference(self, test_data_dir):
model = str(test_data_dir / "inference"/ "test_model" / "test_model.pt")
model = str(test_data_dir / "inference" / "test_model" / "cpu_scripted.pt")
work_dir = str(test_data_dir / "inference")
mask_to_vec = True
mask_to_yolo = True
mask_to_coco = True
device = 'cpu'
device = "cpu"
gpu_id = 0
return GeoInference(model, work_dir, mask_to_vec, mask_to_yolo, mask_to_coco, device, gpu_id)
num_classes = 5
prediction_threshold = 0.3
transformer = True
transform_flip = True
transform_rotate = True
return GeoInference(
model=model,
work_dir=work_dir,
mask_to_vec=mask_to_vec,
mask_to_yolo=mask_to_yolo,
mask_to_coco=mask_to_coco,
device=device,
gpu_id=gpu_id,
multi_gpu=False,
num_classes=num_classes,
prediction_threshold=prediction_threshold,
transformers=transformer,
transformer_flip=transform_flip,
transformer_rotate=transform_rotate,
)

def test_init(self, geo_inference, test_data_dir):

assert geo_inference.work_dir == test_data_dir / "inference"
assert geo_inference.device == 'cpu'
assert geo_inference.device == "cpu"
assert geo_inference.mask_to_vec == True
assert geo_inference.mask_to_yolo == True
assert geo_inference.mask_to_coco == True
assert isinstance(geo_inference.model, torch.jit.ScriptModule)
assert geo_inference.classes >0
assert isinstance(geo_inference.model.model, torch.jit.ScriptModule)
assert geo_inference.classes > 0

def test_call(self, geo_inference, test_data_dir):
tiff_image = test_data_dir / '0.tif'
def test_call(self, geo_inference: GeoInference, test_data_dir: Path):
tiff_image = test_data_dir / "0.tif"
# bbox = '0,0,100,100'
bbox = None
patch_size = 512
bands_requested="1,2,3"
geo_inference(str(tiff_image), bands_requested, patch_size, None)
mask_path = geo_inference.work_dir / "0_mask.tif"
bands_requested = "1,2,3"
workers = 10
mask_name = geo_inference(
inference_input=str(tiff_image),
bands_requested=bands_requested,
patch_size=patch_size,
workers=workers,
bbox=bbox,
)
mask_path = geo_inference.work_dir / mask_name
assert mask_path.exists()
if geo_inference.mask_to_vec:
polygons_path = geo_inference.work_dir / "0_polygons.geojson"
yolo_csv_path = geo_inference.work_dir / "0_yolo.csv"
coco_path = geo_inference.work_dir / "0_coco.json"
assert polygons_path.exists()
assert yolo_csv_path.exists()
assert coco_path.exists()
os.remove(polygons_path)
os.remove(yolo_csv_path)
os.remove(coco_path)
os.remove(mask_path)
polygons_path = geo_inference.work_dir / "0_polygons.geojson"
assert polygons_path.exists()
os.remove(polygons_path)
os.remove(mask_path)
10 changes: 5 additions & 5 deletions tests/utils/test_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def test_validate_asset_type(test_data_dir):
reopened_dataset = validate_asset_type(dataset)
assert reopened_dataset.name == dataset.name
assert not reopened_dataset.closed
assert validate_asset_type(local_tiff_path).name == local_tiff_path
assert Path(validate_asset_type(local_tiff_path).name) == Path(local_tiff_path)

def test_calculate_gpu_stats():
with patch('torch.cuda.utilization', return_value=50), patch('torch.cuda.mem_get_info', return_value=(500, 1000)):
Expand All @@ -105,22 +105,22 @@ def test_get_device():
with patch('geo_inference.utils.helpers.calculate_gpu_stats') as mock_calculate_gpu_stats:
mock_calculate_gpu_stats.return_value = ({"gpu": 10}, {"used": 100, "total": 1024})
device = select_model_device(gpu_id=1, multi_gpu=False)
assert device == 'cpu'
assert device == "cpu"

def test_get_directory():
with patch('pathlib.Path.is_dir', return_value=False), patch('pathlib.Path.mkdir'):
assert get_directory('test') == Path('test')

def test_get_model_local_file(test_data_dir):
model_file = test_data_dir / "inference" / "test_model" / "test_model.pt"
model_file = test_data_dir / "inference" / "test_model" / "cpu_scripted.pt"
model_path = get_model(str(model_file), test_data_dir)
assert model_path == model_file

@patch('geo_inference.utils.helpers.download_file_from_url')
def test_get_model_url(mock_download_file_from_url, test_data_dir):
mock_download_file_from_url.return_value = None
model_path = get_model("https://example.com/test_model.pt", test_data_dir)
assert model_path == test_data_dir / "test_model.pt"
model_path = get_model("https://example.com/cpu_scripted.pt", test_data_dir)
assert model_path == test_data_dir / "cpu_scripted.pt"

def test_get_model_file_not_exists(test_data_dir):
with pytest.raises(ValueError):
Expand Down
Loading