forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Haozheng Fan <[email protected]>
- Loading branch information
Showing
1 changed file
with
123 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
import timeit | ||
import itertools | ||
import argparse | ||
import os | ||
|
||
class OpArgMngr(object): | ||
"""Operator argument manager for storing operator workloads.""" | ||
args = {} | ||
|
||
@staticmethod | ||
def add_workload(funcname, *args, **kwargs): | ||
if "_specifier" not in kwargs: | ||
_specifier = funcname | ||
else: | ||
_specifier = kwargs["_specififer"] | ||
del kwargs["_specififer"] | ||
if _specifier in OpArgMngr.args: | ||
raise ValueError("duplicate {}".format(_specifier)) | ||
OpArgMngr.args[_specifier] = {'args': args, 'kwargs': kwargs, 'funcname': funcname} | ||
|
||
|
||
def generate_workloads(): | ||
array_pool = {} | ||
shapes = [] | ||
for ndim in range(4): | ||
shapes.extend(list(itertools.product(range(4), repeat=ndim))) | ||
for shape in shapes: | ||
name = 'x'.join(str(i) for i in shape) | ||
if name in array_pool: | ||
raise ValueError("duplicate array {}".format(name)) | ||
array_pool[name] = dnp.ones(shape) | ||
return array_pool | ||
|
||
|
||
def prepare_workloads(): | ||
pool = generate_workloads() | ||
OpArgMngr.add_workload("zeros", (2, 2)) | ||
OpArgMngr.add_workload("tensordot", pool['2x2'], pool['2x2'], ((1, 0), (0, 1))) | ||
OpArgMngr.add_workload("cumsum", pool['3x2'], axis=0, out=pool['3x2']) | ||
OpArgMngr.add_workload("add", pool['2x2'], pool['2x2']) | ||
OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1) | ||
|
||
|
||
def benchmark_helper(f, *args, **kwargs): | ||
number = 10000 | ||
return timeit.timeit(lambda: f(*args, **kwargs), number=number) / number | ||
|
||
|
||
def get_op(module, funcname): | ||
funcname = funcname.split(".") | ||
for fname in funcname: | ||
module = getattr(module, fname) | ||
return module | ||
|
||
|
||
def run_benchmark(packages): | ||
results = {} | ||
for (k, v) in OpArgMngr.args.items(): | ||
result = {} | ||
for (name, package) in packages.items(): | ||
print('{}.{} running...'.format(name, k)) | ||
op = get_op(package["module"], v["funcname"]) | ||
args = [package["data"](arg) for arg in v["args"]] | ||
kwargs = {k: package["data"](v) for (k, v) in v["kwargs"].items()} | ||
benchmark = benchmark_helper(op, *args, **kwargs) | ||
result[name] = benchmark | ||
results[k] = result | ||
return results | ||
|
||
|
||
def show_results(results): | ||
print("{:>24}{:>24}{:>24}".format("name", "package", "time(us)")) | ||
for (specifier, d) in results.items(): | ||
for (k, v) in d.items(): | ||
print("{:>24}{:>24}{:>24}".format(specifier, k, v * 10 ** 6)) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('ffi_type') | ||
parsed = parser.parse_args() | ||
if parsed.ffi_type == "cython": | ||
os.environ['MXNET_ENABLE_CYTHON'] = '1' | ||
os.environ['MXNET_ENFORCE_CYTHON'] = '1' | ||
elif parsed.ffi_type == "ctypes": | ||
os.environ['MXNET_ENABLE_CYTHON'] = '0' | ||
else: | ||
raise ValueError("unknown ffi_type {}",format(parsed.ffi_type)) | ||
os.environ["MXNET_ENGINE_TYPE"] = "NaiveEngine" | ||
import mxnet as mx | ||
import numpy as onp | ||
from mxnet import np as dnp | ||
|
||
mx.npx.set_np() | ||
packages = { | ||
"onp": { | ||
"module": onp, | ||
"data": lambda arr: arr.asnumpy() if isinstance(arr, dnp.ndarray) else arr | ||
}, | ||
"dnp": { | ||
"module": dnp, | ||
"data": lambda arr: arr | ||
} | ||
} | ||
prepare_workloads() | ||
results = run_benchmark(packages) | ||
show_results(results) |