NAS-FTI-FDet has been accepted for publication in the IEEE Transactions on Industrial Informatics 2024.
NAS-FTI-FDet is a time- and memory- efficient differentiable architecture method. It mainly focuses on searching a task-specific detection head for fault detection of freight train images. For a detailed description of technical details and experimental results, please refer to our paper:
This code is based on the implementation of FAD
The full installation instructions refer to INSTALL.md.
To run the following example code, you will search for the detection head with FCOS on your dataset:
CUDA_VISIBLE_DEVICES=0 \
python -m torch.distributed.launch \
--nproc_per_node=1 \
--master_port=$((RANDOM + 10000)) \
tools/search_net.py \
--skip-test \
--config-file configs/fad/search/fad-fcos_imprv_R_50_FPN_1x.yaml \
--use-tensorboard \
DATALOADER.NUM_WORKERS 2 \
OUTPUT_DIR training_dir/search/fad-fcos_imprv_R_50_FPN_1x
To run the following example code, you will train FCOS with the searched architecture on your dataset:
CUDA_VISIBLE_DEVICES=0 \
python -m torch.distributed.launch \
--nproc_per_node=1 \
--master_port=$((RANDOM + 10000)) \
tools/train_net.py \
--config-file configs/fad/augment/fad-fcos_imprv_R_50_FPN_1x.yaml \
--genotype-file training_dir/search/fad-fcos_imprv_R_50_FPN_1x/genotype.log \
DATALOADER.NUM_WORKERS 2 \
OUTPUT_DIR training_dir/augment/fad-fcos_imprv_R_50_FPN_1x
To run the following example code, you will evaluate the trained model on your dataset:
CUDA_VISIBLE_DEVICES=0 \
python -m torch.distributed.launch \
tools/test_net.py \
--config-file configs/fad/augment/fad-fcos_imprv_R_50_FPN_1x.yaml \
--genotype-file training_dir/search/fad-fcos_imprv_R_50_FPN_1x/genotype.log \
MODEL.WEIGHT path_to_the_weights.pth \
TEST.IMS_PER_BATCH 6
BibTeX reference is shown in the following.
@article{zhang2024efficient,
title={Efficient Visual Fault Detection for Freight Train via Neural Architecture Search with Data Volume Robustness},
author={Zhang, Yang and Li, Mingying and Pan, Huilin and Liu, Moyun and Zhou, Yang},
journal={arXiv preprint arXiv:2405.17004},
year={2024}
}