Skip to content

Commit

Permalink
Implement MultioutputWrapper (#510)
Browse files Browse the repository at this point in the history
* Implement MultioutputWrapper
* Add wrapper to __all__
* Address deepsource flagged issues
* Update docs & make squeeze_outputs actually work
* Update tests to be randomized and parametrized
* Apply suggestions from code review

Co-authored-by: Stephen Malina <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Nicki Skafte <[email protected]>
Co-authored-by: Jirka Borovec <[email protected]>
  • Loading branch information
5 people authored Sep 24, 2021
1 parent 9ef98b4 commit 5893793
Show file tree
Hide file tree
Showing 6 changed files with 322 additions and 1 deletion.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Added `average` argument to `AveragePrecision` metric for reducing multilabel and multiclass problems ([#477](https://github.com/PyTorchLightning/metrics/pull/477))


- Added `MultioutputWrapper` ([#510](https://github.com/PyTorchLightning/metrics/pull/510))


### Changed

- `AveragePrecision` will now as default output the `macro` average for multilabel and multiclass problems ([#477](https://github.com/PyTorchLightning/metrics/pull/477))
Expand Down
6 changes: 6 additions & 0 deletions docs/source/references/modules.rst
Original file line number Diff line number Diff line change
Expand Up @@ -578,3 +578,9 @@ MetricTracker

.. autoclass:: torchmetrics.MetricTracker
:noindex:

MultioutputWrapper
~~~~~~~~~~~~~~~~~~

.. autoclass:: torchmetrics.MultioutputWrapper
:noindex:
142 changes: 142 additions & 0 deletions tests/wrappers/test_multioutput.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
from collections import namedtuple
from functools import partial
from typing import Any, Callable, Optional

import pytest
import torch
from sklearn.metrics import accuracy_score
from sklearn.metrics import r2_score as sk_r2score

from tests.helpers import seed_all
from tests.helpers.testers import BATCH_SIZE, NUM_BATCHES, NUM_CLASSES, MetricTester
from torchmetrics import Metric
from torchmetrics.classification import Accuracy
from torchmetrics.regression import R2Score
from torchmetrics.wrappers.multioutput import MultioutputWrapper

seed_all(42)


class _MultioutputMetric(Metric):
"""Test class that allows passing base metric as a class rather than its instantiation to the wrapper."""

def __init__(
self,
base_metric_class,
num_outputs: int = 1,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Any = None,
dist_sync_fn: Optional[Callable] = None,
**base_metric_kwargs,
) -> None:
super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
dist_sync_fn=dist_sync_fn,
)
self.metric = MultioutputWrapper(
base_metric_class(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
dist_sync_fn=dist_sync_fn,
**base_metric_kwargs,
),
num_outputs=num_outputs,
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
dist_sync_fn=dist_sync_fn,
)

def update(self, preds: torch.Tensor, target: torch.Tensor) -> None:
"""Update the each pair of outputs and predictions."""
return self.metric.update(preds, target)

def compute(self) -> torch.Tensor:
"""Compute the R2 score between each pair of outputs and predictions."""
return self.metric.compute()

@torch.jit.unused
def forward(self, *args, **kwargs):
"""Run forward on the underlying metric."""
return self.metric(*args, **kwargs)

def reset(self) -> None:
"""Reset the underlying metric state."""
self.metric.reset()


num_targets = 2

Input = namedtuple("Input", ["preds", "target"])

_multi_target_regression_inputs = Input(
preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets),
target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets),
)
_multi_target_classification_inputs = Input(
preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, num_targets),
target=torch.randint(NUM_CLASSES, (NUM_BATCHES, BATCH_SIZE, num_targets)),
)


def _multi_target_sk_r2score(preds, target, adjusted=0, multioutput="raw_values"):
"""Compute R2 score over multiple outputs."""
sk_preds = preds.view(-1, num_targets).numpy()
sk_target = target.view(-1, num_targets).numpy()
r2_score = sk_r2score(sk_target, sk_preds, multioutput=multioutput)
if adjusted != 0:
r2_score = 1 - (1 - r2_score) * (sk_preds.shape[0] - 1) / (sk_preds.shape[0] - adjusted - 1)
return r2_score


def _multi_target_sk_accuracy(preds, target, num_outputs):
"""Compute accuracy over multiple outputs."""
accs = []
for i in range(num_outputs):
accs.append(accuracy_score(torch.argmax(preds[:, :, i], dim=1), target[:, i]))
return accs


@pytest.mark.parametrize(
"base_metric_class, compare_metric, preds, target, num_outputs, metric_kwargs",
[
(
R2Score,
_multi_target_sk_r2score,
_multi_target_regression_inputs.preds,
_multi_target_regression_inputs.target,
num_targets,
{},
),
(
Accuracy,
partial(_multi_target_sk_accuracy, num_outputs=2),
_multi_target_classification_inputs.preds,
_multi_target_classification_inputs.target,
num_targets,
dict(num_classes=NUM_CLASSES),
),
],
)
class TestMultioutputWrapper(MetricTester):
"""Test the MultioutputWrapper class with regression and classification inner metrics."""

@pytest.mark.parametrize("ddp", [True, False])
@pytest.mark.parametrize("dist_sync_on_step", [True, False])
def test_multioutput_wrapper(
self, base_metric_class, compare_metric, preds, target, num_outputs, metric_kwargs, ddp, dist_sync_on_step
):
"""Test that the multioutput wrapper properly slices and computes outputs along the output dimension for
both classification and regression metrics."""
self.run_class_metric_test(
ddp,
preds,
target,
_MultioutputMetric,
compare_metric,
dist_sync_on_step,
metric_args=dict(num_outputs=num_outputs, base_metric_class=base_metric_class, **metric_kwargs),
)
3 changes: 2 additions & 1 deletion torchmetrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
RetrievalRecall,
)
from torchmetrics.text import WER, BERTScore, BLEUScore, ROUGEScore # noqa: E402
from torchmetrics.wrappers import BootStrapper, MetricTracker # noqa: E402
from torchmetrics.wrappers import BootStrapper, MetricTracker, MultioutputWrapper # noqa: E402

__all__ = [
"functional",
Expand Down Expand Up @@ -103,6 +103,7 @@
"Metric",
"MetricCollection",
"MetricTracker",
"MultioutputWrapper",
"PearsonCorrcoef",
"PIT",
"Precision",
Expand Down
1 change: 1 addition & 0 deletions torchmetrics/wrappers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from torchmetrics.wrappers.bootstrapping import BootStrapper # noqa: F401
from torchmetrics.wrappers.multioutput import MultioutputWrapper # noqa: F401
from torchmetrics.wrappers.tracker import MetricTracker # noqa: F401
168 changes: 168 additions & 0 deletions torchmetrics/wrappers/multioutput.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
from copy import deepcopy
from typing import Any, Callable, List, Optional, Tuple

import torch
from torch import nn

from torchmetrics import Metric
from torchmetrics.utilities import apply_to_collection


def _get_nan_indices(*tensors: torch.Tensor) -> torch.Tensor:
"""Get indices of rows along dim 0 which have NaN values."""
if len(tensors) == 0:
raise ValueError("Must pass at least one tensor as argument")
sentinel = tensors[0]
nan_idxs = torch.zeros(len(sentinel), dtype=torch.bool, device=sentinel.device)
for tensor in tensors:
permuted_tensor = tensor.flatten(start_dim=1)
nan_idxs |= torch.any(torch.isnan(permuted_tensor), dim=1)
return nan_idxs


class MultioutputWrapper(Metric):
"""Wrap a base metric to enable it to support multiple outputs.
Several torchmetrics metrics, such as :class:`torchmetrics.regression.spearman.SpearmanCorrcoef` lack support for
multioutput mode. This class wraps such metrics to support computing one metric per output.
Unlike specific torchmetric metrics, it doesn't support any aggregation across outputs.
This means if you set `num_outputs` to 2, `compute()` will return a Tensor of dimension
(2, ...) where ... represents the dimensions the metric returns when not wrapped.
In addition to enabling multioutput support for metrics that lack it, this class also supports, albeit in a crude
fashion, dealing with missing labels (or other data). When ``remove_nans`` is passed, the class will remove the
intersection of NaN containing "rows" upon each update for each output. For example, suppose a user uses
`MultioutputWrapper` to wrap :class:`torchmetrics.regression.r2.R2Score` with 2 outputs, one of which occasionally
has missing labels for classes like ``R2Score`` is that this class supports removing NaN values
(parameter ``remove_nans``) on a per-output basis. When ``remove_nans`` is passed the wrapper will remove all rows
Args:
base_metric:
Metric being wrapped.
num_outputs:
Expected dimensionality of the output dimension. This parameter is
used to determine the number of distinct metrics we need to track.
output_dim:
Dimension on which output is expected. Note that while this provides some flexibility, the output dimension
must be the same for all inputs to update. This applies even for metrics such as `Accuracy` where the labels
can have a different number of dimensions than the predictions. This can be worked around if the output
dimension can be set to -1 for both, even if -1 corresponds to different dimensions in different inputs.
remove_nans:
Whether to remove the intersection of rows containing NaNs from the values passed through to each underlying
metric. Proper operation requires all tensors passed to update to have dimension `(N, ...)` where N
represents the length of the batch or dataset being passed in.
squeeze_outputs:
If true, will squeeze the 1-item dimensions left after `index_select` is applied.
This is sometimes unnecessary but harmless for metrics such as `R2Score` but useful
for certain classification metrics that can't handle additional 1-item dimensions.
compute_on_step:
Whether to recompute the metric value on each update step.
dist_sync_on_step:
Required for distributed training support.
process_group:
Specify the process group on which synchronization is called.
The default: None (which selects the entire world)
dist_sync_fn:
Required for distributed training support.
Example:
>>> # Mimic R2Score in `multioutput`, `raw_values` mode:
>>> import torch
>>> from torchmetrics import MultioutputWrapper, R2Score
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> r2score = MultioutputWrapper(R2Score(), 2)
>>> r2score(preds, target)
[tensor(0.9654), tensor(0.9082)]
>>> # Classification metric where prediction and label tensors have different shapes.
>>> from torchmetrics import BinnedAveragePrecision
>>> target = torch.tensor([[1, 2], [2, 0], [1, 2]])
>>> preds = torch.tensor([
... [[.1, .8], [.8, .05], [.1, .15]],
... [[.1, .1], [.2, .3], [.7, .6]],
... [[.002, .4], [.95, .45], [.048, .15]]
... ])
>>> binned_avg_precision = MultioutputWrapper(BinnedAveragePrecision(3, thresholds=5), 2)
>>> binned_avg_precision(preds, target)
[[tensor(-0.), tensor(1.0000), tensor(1.0000)], [tensor(0.3333), tensor(-0.), tensor(0.6667)]]
"""

def __init__(
self,
base_metric: Metric,
num_outputs: int,
output_dim: int = -1,
remove_nans: bool = True,
squeeze_outputs: bool = True,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
dist_sync_fn: Callable = None,
):
super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
dist_sync_fn=dist_sync_fn,
)
self.metrics = nn.ModuleList([deepcopy(base_metric) for _ in range(num_outputs)])
self.output_dim = output_dim
self.remove_nans = remove_nans
self.squeeze_outputs = squeeze_outputs

def _get_args_kwargs_by_output(
self, *args: torch.Tensor, **kwargs: torch.Tensor
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Get args and kwargs reshaped to be output-specific and (maybe) having NaNs stripped out."""
args_kwargs_by_output = []
for i in range(len(self.metrics)):
selected_args = apply_to_collection(
args, torch.Tensor, torch.index_select, dim=self.output_dim, index=torch.tensor(i, device=self.device)
)
selected_kwargs = apply_to_collection(
kwargs, torch.Tensor, torch.index_select, dim=self.output_dim, index=torch.tensor(i, device=self.device)
)
if self.remove_nans:
args_kwargs = selected_args + tuple(selected_kwargs.values())
nan_idxs = _get_nan_indices(*args_kwargs)
selected_args = [arg[~nan_idxs] for arg in selected_args]
selected_kwargs = {k: v[~nan_idxs] for k, v in selected_kwargs.items()}

if self.squeeze_outputs:
selected_args = [arg.squeeze(self.output_dim) for arg in selected_args]
args_kwargs_by_output.append((selected_args, selected_kwargs))
return args_kwargs_by_output

def update(self, *args: Any, **kwargs: Any) -> None:
"""Update each underlying metric with the corresponding output."""
reshaped_args_kwargs = self._get_args_kwargs_by_output(*args, **kwargs)
for metric, (selected_args, selected_kwargs) in zip(self.metrics, reshaped_args_kwargs):
metric.update(*selected_args, **selected_kwargs)

def compute(self) -> List[torch.Tensor]:
"""Compute metrics."""
return [m.compute() for m in self.metrics]

@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Call underlying forward methods and aggregate the results if they're non-null.
We override this method to ensure that state variables get copied over on the underlying metrics.
"""
results = []
reshaped_args_kwargs = self._get_args_kwargs_by_output(*args, **kwargs)
for metric, (selected_args, selected_kwargs) in zip(self.metrics, reshaped_args_kwargs):
results.append(metric(*selected_args, **selected_kwargs))
if results[0] is None:
return None
return results

@property
def is_differentiable(self) -> bool:
return False

def reset(self) -> None:
"""Reset all underlying metrics."""
for metric in self.metrics:
metric.reset()

0 comments on commit 5893793

Please sign in to comment.