-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision_process.py
376 lines (325 loc) · 13.8 KB
/
vision_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
## This file is modified from https://github.com/kq-chen/qwen-vl-utils/blob/main/src/qwen_vl_utils/vision_process.py
from __future__ import annotations
import base64
import logging
import math
import os
import sys
import time
import warnings
from functools import lru_cache
from io import BytesIO
import requests
import torch
import torchvision
from packaging import version
from PIL import Image
from torchvision import io, transforms
from torchvision.transforms import InterpolationMode
logger = logging.getLogger(__name__)
IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200
VIDEO_MIN_PIXELS = 128 * 28 * 28
VIDEO_MAX_PIXELS = 768 * 28 * 28
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28
FRAME_FACTOR = 2
FPS = 2.0
FPS_MIN_FRAMES = 4
FPS_MAX_FRAMES = 768
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def smart_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if max(height, width) / min(height, width) > MAX_RATIO:
raise ValueError(
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR) -> Image.Image:
if "image" in ele:
image = ele["image"]
else:
image = ele["image_url"]
image_obj = None
if isinstance(image, Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
image_obj = Image.open(requests.get(image, stream=True).raw)
elif image.startswith("file://"):
image_obj = Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
image_obj = Image.open(BytesIO(data))
else:
image_obj = Image.open(image)
if image_obj is None:
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
image = image_obj.convert("RGB")
## resize
if "resized_height" in ele and "resized_width" in ele:
resized_height, resized_width = smart_resize(
ele["resized_height"],
ele["resized_width"],
factor=size_factor,
)
else:
width, height = image.size
min_pixels = ele.get("min_pixels", MIN_PIXELS)
max_pixels = ele.get("max_pixels", MAX_PIXELS)
resized_height, resized_width = smart_resize(
height,
width,
factor=size_factor,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
image = image.resize((resized_width, resized_height))
return image
def smart_nframes(
ele: dict,
total_frames: int,
video_fps: int | float,
) -> int:
"""calculate the number of frames for video used for model inputs.
Args:
ele (dict): a dict contains the configuration of video.
support either `fps` or `nframes`:
- nframes: the number of frames to extract for model inputs.
- fps: the fps to extract frames for model inputs.
- min_frames: the minimum number of frames of the video, only used when fps is provided.
- max_frames: the maximum number of frames of the video, only used when fps is provided.
total_frames (int): the original total number of frames of the video.
video_fps (int | float): the original fps of the video.
Raises:
ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
Returns:
int: the number of frames for video used for model inputs.
"""
assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`"
if "nframes" in ele:
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
else:
fps = ele.get("fps", FPS)
min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR)
nframes = total_frames / video_fps * fps
nframes = min(max(nframes, min_frames), max_frames)
nframes = round_by_factor(nframes, FRAME_FACTOR)
if nframes > total_frames:
nframes = total_frames
if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.")
return nframes
def _read_video_torchvision(
ele: dict,
) -> torch.Tensor:
"""read video using torchvision.io.read_video
Args:
ele (dict): a dict contains the configuration of video.
support keys:
- video: the path of video. support "file://", "http://", "https://" and local path.
- video_start: the start time of video.
- video_end: the end time of video.
Returns:
torch.Tensor: the video tensor with shape (T, C, H, W).
"""
video_path = ele["video"]
if version.parse(torchvision.__version__) < version.parse("0.19.0"):
if "http://" in video_path or "https://" in video_path:
warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.")
if "file://" in video_path:
video_path = video_path[7:]
st = time.time()
video, audio, info = io.read_video(
video_path,
start_pts=ele.get("video_start", 0.0),
end_pts=ele.get("video_end", None),
pts_unit="sec",
output_format="TCHW",
)
total_frames, video_fps = video.size(0), info["video_fps"]
# logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
if ele['sample_type'] == 'uniform':
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
elif ele['sample_type'] == 'multi_pts':
frames_each_pts = 6
num_pts = 4
fps = 8
nframes = int(total_frames * fps // video_fps)
frames_idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
start_pt = int(frames_each_pts // 2)
end_pt = int(nframes - frames_each_pts // 2 - 1)
pts = torch.linspace(start_pt, end_pt, num_pts).round().long().tolist()
idx = []
for pt in pts:
idx.extend(frames_idx[pt - frames_each_pts // 2 : pt + frames_each_pts // 2])
video = video[idx]
return video
def is_decord_available() -> bool:
import importlib.util
return importlib.util.find_spec("decord") is not None
def _read_video_decord(
ele: dict,
) -> torch.Tensor:
"""read video using decord.VideoReader
Args:
ele (dict): a dict contains the configuration of video.
support keys:
- video: the path of video. support "file://", "http://", "https://" and local path.
- video_start: the start time of video.
- video_end: the end time of video.
Returns:
torch.Tensor: the video tensor with shape (T, C, H, W).
"""
import decord
video_path = ele["video"]
st = time.time()
vr = decord.VideoReader(video_path)
# TODO: support start_pts and end_pts
if 'video_start' in ele or 'video_end' in ele:
raise NotImplementedError("not support start_pts and end_pts in decord for now.")
total_frames, video_fps = len(vr), vr.get_avg_fps()
# logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
if ele['sample_type'] == 'uniform':
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
# nframes = max(nframes, 8)
# import pdb; pdb.set_trace()
idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
elif ele['sample_type'] == 'multi_pts':
frames_each_pts = 6
num_pts = 4
fps = 8
nframes = int(total_frames * fps // video_fps)
frames_idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
start_pt = int(frames_each_pts // 2)
end_pt = int(nframes - frames_each_pts // 2 - 1)
pts = torch.linspace(start_pt, end_pt, num_pts).round().long().tolist()
idx = []
for pt in pts:
idx.extend(frames_idx[pt - frames_each_pts // 2 : pt + frames_each_pts // 2])
video = vr.get_batch(idx).asnumpy()
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
return video
VIDEO_READER_BACKENDS = {
"decord": _read_video_decord,
"torchvision": _read_video_torchvision,
}
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
@lru_cache(maxsize=1)
def get_video_reader_backend() -> str:
if FORCE_QWENVL_VIDEO_READER is not None:
video_reader_backend = FORCE_QWENVL_VIDEO_READER
elif is_decord_available():
video_reader_backend = "decord"
else:
video_reader_backend = "torchvision"
print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr)
return video_reader_backend
def fetch_video(ele: dict, image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]:
if isinstance(ele["video"], str):
video_reader_backend = get_video_reader_backend()
video = VIDEO_READER_BACKENDS[video_reader_backend](ele)
# import pdb; pdb.set_trace()
nframes, _, height, width = video.shape
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
max_pixels = max(min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05))
max_pixels = ele.get("max_pixels", max_pixels)
if "resized_height" in ele and "resized_width" in ele:
resized_height, resized_width = smart_resize(
ele["resized_height"],
ele["resized_width"],
factor=image_factor,
)
else:
resized_height, resized_width = smart_resize(
height,
width,
factor=image_factor,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
video = transforms.functional.resize(
video,
[resized_height, resized_width],
interpolation=InterpolationMode.BICUBIC,
antialias=True,
).float()
return video
else:
assert isinstance(ele["video"], (list, tuple))
process_info = ele.copy()
process_info.pop("type", None)
process_info.pop("video", None)
images = [
fetch_image({"image": video_element, **process_info}, size_factor=image_factor)
for video_element in ele["video"]
]
nframes = ceil_by_factor(len(images), FRAME_FACTOR)
if len(images) < nframes:
images.extend([images[-1]] * (nframes - len(images)))
return images
def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]:
vision_infos = []
if isinstance(conversations[0], dict):
conversations = [conversations]
for conversation in conversations:
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if (
"image" in ele
or "image_url" in ele
or "video" in ele
or ele["type"] in ("image", "image_url", "video")
):
vision_infos.append(ele)
return vision_infos
def process_vision_info(
conversations: list[dict] | list[list[dict]],
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None]:
vision_infos = extract_vision_info(conversations)
## Read images or videos
image_inputs = []
video_inputs = []
for vision_info in vision_infos:
if "image" in vision_info or "image_url" in vision_info:
image_inputs.append(fetch_image(vision_info))
elif "video" in vision_info:
video_inputs.append(fetch_video(vision_info))
else:
raise ValueError("image, image_url or video should in content.")
if len(image_inputs) == 0:
image_inputs = None
if len(video_inputs) == 0:
video_inputs = None
return image_inputs, video_inputs