-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_reward.py
297 lines (250 loc) · 12.2 KB
/
train_reward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import ast
import json
import os
import pdb
import random
from dataclasses import asdict
from functools import partial
import torch
from datasets import load_dataset, concatenate_datasets
from peft import LoraConfig, get_peft_model
from transformers import AutoProcessor, HfArgumentParser
from trl import get_kbit_device_map, get_quantization_config
from trainer import Qwen2VLRewardModelBT, VideoVLMRewardTrainer, compute_multi_attr_accuracy, PartialEmbeddingUpdateCallback
from data import DataConfig, QWen2VLDataCollator, convert_GSB_csv_to_reward_data
from utils import ModelConfig, PEFTLoraConfig, TrainingConfig
from utils import load_model_from_checkpoint
def save_configs_to_json(data_config, training_args, model_config, peft_lora_config):
"""
Save all configurations to a JSON file.
"""
config_dict = {
"data_config": asdict(data_config),
"training_args": asdict(training_args),
"model_config": asdict(model_config),
"peft_lora_config": asdict(peft_lora_config),
}
# del information about local device
del config_dict["training_args"]["local_rank"]
del config_dict["training_args"]["_n_gpu"]
save_path = os.path.join(training_args.output_dir, "model_config.json")
os.makedirs(training_args.output_dir, exist_ok=True)
print(training_args.output_dir)
with open(save_path, "w") as f:
json.dump(config_dict, f, indent=4)
def find_target_linear_names(model, num_lora_modules=-1, lora_namespan_exclude=[], verbose=False):
"""
Find the target linear modules for LoRA.
"""
linear_cls = torch.nn.Linear
embedding_cls = torch.nn.Embedding
lora_module_names = []
for name, module in model.named_modules():
if any(ex_keyword in name for ex_keyword in lora_namespan_exclude):
# print(f"Excluding module: {name}")
continue
if isinstance(module, (linear_cls, embedding_cls)):
lora_module_names.append(name)
if num_lora_modules > 0:
lora_module_names = lora_module_names[-num_lora_modules:]
if verbose:
print(f"Found {len(lora_module_names)} lora modules: {lora_module_names}")
return lora_module_names
def set_requires_grad(parameters, requires_grad):
for p in parameters:
p.requires_grad = requires_grad
def create_model_and_processor(
model_config, peft_lora_config, training_args,
cache_dir=None,
):
# create model
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
use_cache=True if training_args.gradient_checkpointing else False,
)
# pdb.set_trace()
# create processor and set padding
processor = AutoProcessor.from_pretrained(model_config.model_name_or_path,
padding_side="right",
cache_dir=cache_dir)
special_token_ids = None
if model_config.use_special_tokens:
special_tokens = ["<|VQ_reward|>", "<|MQ_reward|>", "<|TA_reward|>"]
processor.tokenizer.add_special_tokens({"additional_special_tokens": special_tokens})
special_token_ids = processor.tokenizer.convert_tokens_to_ids(special_tokens)
model = Qwen2VLRewardModelBT.from_pretrained(
model_config.model_name_or_path,
output_dim=model_config.output_dim,
reward_token=model_config.reward_token,
special_token_ids=special_token_ids,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2" if not training_args.disable_flash_attn2 else "sdpa",
cache_dir=cache_dir,
**model_kwargs
)
if model_config.use_special_tokens:
model.resize_token_embeddings(len(processor.tokenizer))
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
# create lora and peft model
if peft_lora_config.lora_enable:
target_modules = find_target_linear_names(model,
num_lora_modules=peft_lora_config.num_lora_modules,
lora_namespan_exclude=peft_lora_config.lora_namespan_exclude)
peft_config = LoraConfig(
target_modules=target_modules,
r=peft_lora_config.lora_r,
lora_alpha=peft_lora_config.lora_alpha,
lora_dropout=peft_lora_config.lora_dropout,
task_type=peft_lora_config.lora_task_type,
use_rslora=peft_lora_config.use_rslora,
bias="none",
modules_to_save=peft_lora_config.lora_modules_to_save,
)
model = get_peft_model(model, peft_config)
else:
peft_config = None
model.config.tokenizer_padding_side = processor.tokenizer.padding_side
model.config.pad_token_id = processor.tokenizer.pad_token_id
return model, processor, peft_config
def create_dataset(data_config, meta_file=None):
if meta_file is None:
meta_file = data_config.meta_data
dataset = load_dataset('csv', data_files=meta_file)
def add_idx(example, idx):
example['metainfo_idx'] = idx
return example
dataset['train'] = dataset['train'].map(lambda example, idx: add_idx(example, idx), with_indices=True)
if not data_config.use_tied_data:
filter_func = lambda example: any(example[f"{dim}"] != "same" for dim in data_config.eval_dim)
dataset = dataset.filter(filter_func)
# convert data to reward data
convert_func = lambda example: convert_GSB_csv_to_reward_data(example, data_config.data_dir, data_config.eval_dim,
data_config.max_frame_pixels, data_config.fps, data_config.num_frames,
data_config.prompt_template_type,
sample_type=data_config.sample_type,)
dataset = dataset.map(convert_func, remove_columns=dataset['train'].column_names, load_from_cache_file=False)
dataset = dataset['train']
# pdb.set_trace()
return dataset
def train():
## ===> Step 1: Parse arguments
parser = HfArgumentParser((DataConfig, TrainingConfig, ModelConfig, PEFTLoraConfig))
data_config, training_args, model_config, peft_lora_config = parser.parse_args_into_dataclasses()
# pdb.set_trace()
# check valid (lora config)
assert not (peft_lora_config.lora_enable and model_config.freeze_llm), 'When using LoRA, the LLM should not be frozen. If you want to freeze the LLM, please disable LoRA.'
if not peft_lora_config.lora_enable:
assert not peft_lora_config.vision_lora, \
"Error: model_config.lora_enable is not enabled, but model_config.vision_lora is enabled."
else:
if peft_lora_config.lora_namespan_exclude is not None:
peft_lora_config.lora_namespan_exclude = ast.literal_eval(peft_lora_config.lora_namespan_exclude)
else:
peft_lora_config.lora_namespan_exclude = []
if not peft_lora_config.vision_lora:
peft_lora_config.lora_namespan_exclude += ["visual"]
# pdb.set_trace()
## ===> Step 2: Load model and configure
model, processor, peft_config = create_model_and_processor(
model_config=model_config,
peft_lora_config=peft_lora_config,
training_args=training_args,
)
## load model
if training_args.load_from_pretrained is not None:
model, checkpoint_step = load_model_from_checkpoint(model, training_args.load_from_pretrained, training_args.load_from_pretrained_step)
model.train()
if peft_lora_config.lora_enable:
model_to_configure = model.model
else:
model_to_configure = model
# set requires_grad for LLM
set_requires_grad(model_to_configure.model.parameters(), not model_config.freeze_llm)
if not peft_lora_config.vision_lora:
# set requires_grad for visual encoder and merger
set_requires_grad(model_to_configure.visual.parameters(), not model_config.freeze_vision_tower)
set_requires_grad(model_to_configure.visual.merger.parameters(), model_config.tune_merger)
# set requires_grad for regression head
set_requires_grad(model_to_configure.rm_head.parameters(), True)
## ===> Step 3: Load Dataset and configure
if isinstance(data_config.eval_dim, str):
data_config.eval_dim = [data_config.eval_dim]
# datasets = create_dataset(data_config)
# train_dataset = concatenate_datasets([datasets[dim] for dim in data_config.eval_dim])
train_dataset = create_dataset(data_config)
train_dataset = train_dataset.shuffle(seed=42)
if training_args.conduct_eval:
if data_config.meta_data_test is not None:
random.seed(42)
valid_dataset = create_dataset(data_config, meta_file=data_config.meta_data_test)
# indices = random.sample(range(len(valid_dataset)), 1000)
# valid_dataset = valid_dataset.select(indices)
else:
dataset = train_dataset.train_test_split(test_size=0.02)
train_dataset = dataset['train']
valid_dataset = dataset['test']
else:
valid_dataset = None
print(f"===> Selected {len(train_dataset)} samples for training.")
print(f"===> Selected {len(valid_dataset)} samples for testing.")
num_gpu = int(os.environ.get("WORLD_SIZE", 1))
data_collator = QWen2VLDataCollator(processor, add_noise=data_config.add_noise,
p_shuffle_frames=data_config.p_shuffle_frames,
p_color_jitter=data_config.p_color_jitter,)
compute_metrics = partial(compute_multi_attr_accuracy, eval_dims=data_config.eval_dim)
actual_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * num_gpu
total_steps = training_args.num_train_epochs * len(train_dataset) // actual_batch_size
if training_args.save_epochs is not None:
training_args.save_steps = round(training_args.save_epochs * len(train_dataset) / actual_batch_size)
if training_args.eval_epochs is not None:
training_args.eval_steps = round(training_args.eval_epochs * len(train_dataset) / actual_batch_size)
if training_args.logging_epochs is not None:
training_args.logging_steps = round(training_args.logging_epochs * len(train_dataset) / actual_batch_size)
if training_args.local_rank == -1 or training_args.local_rank == 0:
print(f"===> Using {num_gpu} GPUs.")
print(f"===> Total Batch Size: {actual_batch_size}")
print(f"===> Training Epochs: {training_args.num_train_epochs}")
print(f"===> Total Steps: {total_steps}")
print(f"===> Save Steps: {training_args.save_steps}")
print(f"===> Eval Steps: {training_args.eval_steps}")
print(f"===> Logging Steps: {training_args.logging_steps}")
# pdb.set_trace()
## ===> Step 4: Save configs for re-check
if training_args.local_rank == -1 or training_args.local_rank == 0:
save_configs_to_json(data_config, training_args, model_config, peft_lora_config)
print(train_dataset)
## ===> Step 5: Start Training!
special_token_ids = model.special_token_ids
callbacks = []
if special_token_ids is not None:
callbacks.append(PartialEmbeddingUpdateCallback(special_token_ids))
trainer = VideoVLMRewardTrainer(
model=model,
compute_metrics=compute_metrics,
data_collator=data_collator,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset if training_args.conduct_eval else None,
peft_config=peft_config,
callbacks=callbacks,
loss_type=model_config.loss_type,
tokenizer=processor.tokenizer,
)
trainer.train()
if training_args.local_rank == -1 or training_args.local_rank == 0:
model_state_dict = model.state_dict()
torch.save(model_state_dict, os.path.join(training_args.output_dir, 'final_model.pth'))
model.config.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
train()