Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix rdiv of complex lhs by real factorizations #50671

Merged
merged 4 commits into from
Jul 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 30 additions & 26 deletions stdlib/LinearAlgebra/src/factorization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,12 @@ function Base.show(io::IO, ::MIME"text/plain", x::TransposeFactorization)
show(io, MIME"text/plain"(), parent(x))
end

function (\)(F::Factorization, B::AbstractVecOrMat)
require_one_based_indexing(B)
TFB = typeof(oneunit(eltype(F)) \ oneunit(eltype(B)))
ldiv!(F, copy_similar(B, TFB))
end
(\)(F::TransposeFactorization, B::AbstractVecOrMat) = conj!(adjoint(F.parent) \ conj.(B))
# With a real lhs and complex rhs with the same precision, we can reinterpret
# the complex rhs as a real rhs with twice the number of columns or rows
function (\)(F::Factorization{T}, B::VecOrMat{Complex{T}}) where {T<:BlasReal}
Expand All @@ -151,32 +157,6 @@ end
(\)(F::AdjointFactorization{T}, B::VecOrMat{Complex{T}}) where {T<:BlasReal} =
@invoke \(F::typeof(F), B::VecOrMat)

function (/)(B::VecOrMat{Complex{T}}, F::Factorization{T}) where {T<:BlasReal}
require_one_based_indexing(B)
x = rdiv!(copy(reinterpret(T, B)), F)
return copy(reinterpret(Complex{T}, x))
end
# don't do the reinterpretation for [Adjoint/Transpose]Factorization
(/)(B::VecOrMat{Complex{T}}, F::TransposeFactorization{T}) where {T<:BlasReal} =
conj!(adjoint(parent(F)) \ conj.(B))
(/)(B::VecOrMat{Complex{T}}, F::AdjointFactorization{T}) where {T<:BlasReal} =
@invoke /(B::VecOrMat{Complex{T}}, F::Factorization{T})

function (\)(F::Factorization, B::AbstractVecOrMat)
require_one_based_indexing(B)
TFB = typeof(oneunit(eltype(F)) \ oneunit(eltype(B)))
ldiv!(F, copy_similar(B, TFB))
end
(\)(F::TransposeFactorization, B::AbstractVecOrMat) = conj!(adjoint(F.parent) \ conj.(B))

function (/)(B::AbstractMatrix, F::Factorization)
require_one_based_indexing(B)
TFB = typeof(oneunit(eltype(B)) / oneunit(eltype(F)))
rdiv!(copy_similar(B, TFB), F)
end
(/)(A::AbstractMatrix, F::AdjointFactorization) = adjoint(adjoint(F) \ adjoint(A))
(/)(A::AbstractMatrix, F::TransposeFactorization) = transpose(transpose(F) \ transpose(A))

function ldiv!(Y::AbstractVector, A::Factorization, B::AbstractVector)
require_one_based_indexing(Y, B)
m, n = size(A)
Expand All @@ -200,3 +180,27 @@ function ldiv!(Y::AbstractMatrix, A::Factorization, B::AbstractMatrix)
return ldiv!(A, Y)
end
end

function (/)(B::AbstractMatrix, F::Factorization)
require_one_based_indexing(B)
TFB = typeof(oneunit(eltype(B)) / oneunit(eltype(F)))
rdiv!(copy_similar(B, TFB), F)
end
# reinterpretation trick for complex lhs and real factorization
function (/)(B::Union{Matrix{Complex{T}},AdjOrTrans{Complex{T},Vector{Complex{T}}}}, F::Factorization{T}) where {T<:BlasReal}
require_one_based_indexing(B)
x = rdiv!(copy(reinterpret(T, B)), F)
return copy(reinterpret(Complex{T}, x))
end
# don't do the reinterpretation for [Adjoint/Transpose]Factorization
(/)(B::Union{Matrix{Complex{T}},AdjOrTrans{Complex{T},Vector{Complex{T}}}}, F::TransposeFactorization{T}) where {T<:BlasReal} =
@invoke /(B::AbstractMatrix, F::Factorization)
(/)(B::Matrix{Complex{T}}, F::AdjointFactorization{T}) where {T<:BlasReal} =
@invoke /(B::AbstractMatrix, F::Factorization)
(/)(B::Adjoint{Complex{T},Vector{Complex{T}}}, F::AdjointFactorization{T}) where {T<:BlasReal} =
(F' \ B')'
dkarrasch marked this conversation as resolved.
Show resolved Hide resolved
(/)(B::Transpose{Complex{T},Vector{Complex{T}}}, F::TransposeFactorization{T}) where {T<:BlasReal} =
transpose(transpose(F) \ transpose(B))

rdiv!(B::AbstractMatrix, A::TransposeFactorization) = transpose(ldiv!(A.parent, transpose(B)))
rdiv!(B::AbstractMatrix, A::AdjointFactorization) = adjoint(ldiv!(A.parent, adjoint(B)))
1 change: 0 additions & 1 deletion stdlib/LinearAlgebra/src/hessenberg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -600,7 +600,6 @@ function rdiv!(B::AbstractVecOrMat{<:Complex}, F::Hessenberg{<:Complex,<:Any,<:A
end

ldiv!(F::AdjointFactorization{<:Any,<:Hessenberg}, B::AbstractVecOrMat) = rdiv!(B', F')'
rdiv!(B::AbstractMatrix, F::AdjointFactorization{<:Any,<:Hessenberg}) = ldiv!(F', B')'

det(F::Hessenberg) = det(F.H; shift=F.μ)
logabsdet(F::Hessenberg) = logabsdet(F.H; shift=F.μ)
Expand Down
2 changes: 0 additions & 2 deletions stdlib/LinearAlgebra/src/lu.jl
Original file line number Diff line number Diff line change
Expand Up @@ -709,8 +709,6 @@ function ldiv!(adjA::AdjointFactorization{<:Any,<:LU{T,Tridiagonal{T,V}}}, B::Ab
end

rdiv!(B::AbstractMatrix, A::LU) = transpose(ldiv!(transpose(A), transpose(B)))
rdiv!(B::AbstractMatrix, A::TransposeFactorization{<:Any,<:LU}) = transpose(ldiv!(A.parent, transpose(B)))
rdiv!(B::AbstractMatrix, A::AdjointFactorization{<:Any,<:LU}) = adjoint(ldiv!(A.parent, adjoint(B)))

# Conversions
AbstractMatrix(F::LU) = (F.L * F.U)[invperm(F.p),:]
Expand Down
4 changes: 3 additions & 1 deletion stdlib/LinearAlgebra/test/hessenberg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -178,8 +178,10 @@ let n = 10
@test H \ B ≈ A \ B ≈ H \ complex(B)
@test (H - I) \ B ≈ (A - I) \ B
@test (H - (3+4im)I) \ B ≈ (A - (3+4im)I) \ B
@test b' / H ≈ b' / A ≈ complex.(b') / H
@test b' / H ≈ b' / A ≈ complex(b') / H
dkarrasch marked this conversation as resolved.
Show resolved Hide resolved
@test transpose(b) / H ≈ transpose(b) / A ≈ transpose(complex(b)) / H
@test B' / H ≈ B' / A ≈ complex(B') / H
@test b' / H' ≈ complex(b)' / H'
@test B' / (H - I) ≈ B' / (A - I)
@test B' / (H - (3+4im)I) ≈ B' / (A - (3+4im)I)
@test (H - (3+4im)I)' \ B ≈ (A - (3+4im)I)' \ B
Expand Down
9 changes: 9 additions & 0 deletions stdlib/LinearAlgebra/test/lu.jl
Original file line number Diff line number Diff line change
Expand Up @@ -391,6 +391,15 @@ end
B = randn(elty, 5, 5)
@test rdiv!(transform(A), transform(lu(B))) ≈ transform(C) / transform(B)
end
for elty in (Float32, Float64, ComplexF64), transF in (identity, transpose),
transB in (transpose, adjoint), transT in (identity, complex)
A = randn(elty, 5, 5)
F = lu(A)
b = randn(transT(elty), 5)
@test rdiv!(transB(copy(b)), transF(F)) ≈ transB(b) / transF(F) ≈ transB(b) / transF(A)
B = randn(transT(elty), 5, 5)
@test rdiv!(copy(B), transF(F)) ≈ B / transF(F) ≈ B / transF(A)
end
end

@testset "transpose(A) / lu(B)' should not overwrite A (#36657)" begin
Expand Down