Huichi Zhou*1, Kin-Hei Lee*1, Zhonghao Zhan*1, Yue Chen2, Zhenhao Li1, Zhaoyang Wang3,Hamed Haddadi1 Emine Yilmaz4
1Imperial College London, 2Peking University, 3University of North Carolina at Chapel Hill, 4University College London
*Equal Contribution
- 2025.1.10 OpenAI API Inference Now Supported! Additionally, we have introduced a new module: Self-Assessment of Retrieval Correctness, enabling enhanced evaluation of retrieval accuracy.
git clone https://github.com/HuichiZhou/TrustRAG.git
conda create -n trustrag python=3.10
conda activate trustrag
pip install lmdeploy
pip install beir
pip install nltk
pip install rouge_score
pip install timm==0.9.2
cd TrustRAG
python run.py
- Our code used the implementation of corpus-poisoning.
- The model part of our code is from Open-Prompt-Injection.
- Our code used beir benchmark.
- Our code used contriever for retrieval augmented generation (RAG).
- Our code used PoisonedRAG for corpus poisoning attack.
If you find this paper useful, please consider staring 🌟 this repo and citing 📑 our paper:
@article{zhou2025trustrag,
title={Trustrag: Enhancing robustness and trustworthiness in rag},
author={Zhou, Huichi and Lee, Kin-Hei and Zhan, Zhonghao and Chen, Yue and Li, Zhenhao and Wang, Zhaoyang and Haddadi, Hamed and Yilmaz, Emine},
journal={arXiv preprint arXiv:2501.00879},
year={2025}
}