Skip to content

Code for "TrustRAG: Enhancing Robustness and Trustworthiness in RAG"

License

Notifications You must be signed in to change notification settings

HuichiZhou/TrustRAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🔥 TrustRAG: Enhancing Robustness and Trustworthiness in RAG

[Project page] [Paper]

Huichi Zhou*1, Kin-Hei Lee*1, Zhonghao Zhan*1, Yue Chen2, Zhenhao Li1, Zhaoyang Wang3,Hamed Haddadi1 Emine Yilmaz4

1Imperial College London, 2Peking University, 3University of North Carolina at Chapel Hill, 4University College London

*Equal Contribution

drawing

🔥 NEWS

  • 2025.1.10 OpenAI API Inference Now Supported! Additionally, we have introduced a new module: Self-Assessment of Retrieval Correctness, enabling enhanced evaluation of retrieval accuracy.

🛝 Try it out!

🛠️ Installation

git clone https://github.com/HuichiZhou/TrustRAG.git

conda create -n trustrag python=3.10

conda activate trustrag

pip install lmdeploy

pip install beir

pip install nltk

pip install rouge_score

pip install timm==0.9.2

cd TrustRAG

python run.py

🙏 Acknowledgement

📝 Citation and Reference

If you find this paper useful, please consider staring 🌟 this repo and citing 📑 our paper:

@article{zhou2025trustrag,
  title={Trustrag: Enhancing robustness and trustworthiness in rag},
  author={Zhou, Huichi and Lee, Kin-Hei and Zhan, Zhonghao and Chen, Yue and Li, Zhenhao and Wang, Zhaoyang and Haddadi, Hamed and Yilmaz, Emine},
  journal={arXiv preprint arXiv:2501.00879},
  year={2025}
}

About

Code for "TrustRAG: Enhancing Robustness and Trustworthiness in RAG"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages