Skip to content

HIRO-group/epymarl-rware

 
 

Repository files navigation

Using EpyMARL for RWARE

To register a custom RWARE environment, go to epymarl-rware/src/marl.py file and give the layout of the custom environment. To register the environment just run marl.py file.

To train a RL algorithm on the environment use the command.

python src/main.py --config=qmix --env-config=gymma with env_args.time_limit=500 env_args.key="marl:your-env-name" save_model=True

If common reward is sufficient, common_reward=True.

python src/main.py --config=qmix --env-config=gymma with env_args.time_limit=500 env_args.key="marl:your-env-name" save_model=True common_reward=True

To visualize results, run from the root folder, after selecting the required metric.

 python3 plot_results.py --path ./results/sacred/qmix/your-env-name --metric test_return_mean --save_dir ./plots

For readme of EpyMARL, visit https://github.com/uoe-agents/epymarl/blob/main/README.md

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 64.9%
  • C 32.4%
  • Roff 1.1%
  • Other 1.6%