xxHash is an Extremely fast Hash algorithm, running at RAM speed limits. It successfully completes the SMHasher test suite which evaluates collision, dispersion and randomness qualities of hash functions. Code is highly portable, and hashes are identical across all platforms (little / big endian).
Branch | Status |
---|---|
release | |
dev |
The reference system uses an Intel i7-9700K cpu, and runs Ubuntu x64 20.04.
The open source benchmark program is compiled with clang
v10.0 using -O3
flag.
Hash Name | Width | Bandwidth (GB/s) | Small Data Velocity | Quality | Comment |
---|---|---|---|---|---|
XXH3 (SSE2) | 64 | 31.5 GB/s | 133.1 | 10 | |
XXH128 (SSE2) | 128 | 29.6 GB/s | 118.1 | 10 | |
RAM sequential read | N/A | 28.0 GB/s | N/A | N/A | for reference |
City64 | 64 | 22.0 GB/s | 76.6 | 10 | |
T1ha2 | 64 | 22.0 GB/s | 99.0 | 9 | Slightly worse collisions |
City128 | 128 | 21.7 GB/s | 57.7 | 10 | |
XXH64 | 64 | 19.4 GB/s | 71.0 | 10 | |
SpookyHash | 64 | 19.3 GB/s | 53.2 | 10 | |
Mum | 64 | 18.0 GB/s | 67.0 | 9 | Slightly worse collisions |
XXH32 | 32 | 9.7 GB/s | 71.9 | 10 | |
City32 | 32 | 9.1 GB/s | 66.0 | 10 | |
Murmur3 | 32 | 3.9 GB/s | 56.1 | 10 | |
SipHash | 64 | 3.0 GB/s | 43.2 | 10 | |
FNV64 | 64 | 1.2 GB/s | 62.7 | 5 | Poor avalanche properties |
Blake2 | 256 | 1.1 GB/s | 5.1 | 10 | Cryptographic |
SHA1 | 160 | 0.8 GB/s | 5.6 | 10 | Cryptographic but broken |
MD5 | 128 | 0.6 GB/s | 7.8 | 10 | Cryptographic but broken |
note 1: Small data velocity is a rough evaluation of algorithm's efficiency on small data. For more detailed analysis, please refer to next paragraph.
note 2: some algorithms feature faster than RAM speed. In which case, they can only reach their full speed when input data is already in CPU cache (L3 or better). Otherwise, they max out on RAM speed limit.
Performance on large data is only one part of the picture. Hashing is also very useful in constructions like hash tables and bloom filters. In these use cases, it's frequent to hash a lot of small data (starting at a few bytes). Algorithm's performance can be very different for such scenarios, since parts of the algorithm, such as initialization or finalization, become fixed cost. The impact of branch mis-prediction also becomes much more present.
XXH3 has been designed for excellent performance on both long and small inputs, which can be observed in the following graph:
For a more detailed analysis, visit the wiki : https://github.com/Cyan4973/xxHash/wiki/Performance-comparison#benchmarks-concentrating-on-small-data-
Speed is not the only property that matters. Produced hash values must respect excellent dispersion and randomness properties, so that any sub-section of it can be used to maximally spread out a table or index, as well as reduce the amount of collisions to the minimal theoretical level, following the birthday paradox.
xxHash
has been tested with Austin Appleby's excellent SMHasher test suite,
and passes all tests, ensuring reasonable quality levels.
It also passes extended tests from newer forks of SMHasher, featuring additional scenarios and conditions.
Finally, xxHash provides its own massive collision tester, able to generate and compare billions of hashes to test the limits of 64-bit hash algorithms. On this front too, xxHash features good results, in line with the birthday paradox. A more detailed analysis is documented in the wiki.
The following macros can be set at compilation time to modify libxxhash's behavior. They are generally disabled by default.
XXH_INLINE_ALL
: Make all functionsinline
, with implementations being directly included withinxxhash.h
. Inlining functions is beneficial for speed on small keys. It's extremely effective when key length is expressed as a compile time constant, with performance improvements observed in the +200% range . See this article for details.XXH_PRIVATE_API
: same outcome asXXH_INLINE_ALL
. Still available for legacy support. The name underlines thatXXH_*
symbols will not be exported.XXH_NAMESPACE
: Prefixes all symbols with the value ofXXH_NAMESPACE
. This macro can only use compilable character set. Useful to evade symbol naming collisions, in case of multiple inclusions of xxHash's source code. Client applications still use the regular function names, as symbols are automatically translated throughxxhash.h
.XXH_FORCE_MEMORY_ACCESS
: The default method0
uses a portablememcpy()
notation. Method1
uses a gcc-specificpacked
attribute, which can provide better performance for some targets. Method2
forces unaligned reads, which is not standards compliant, but might sometimes be the only way to extract better read performance. Method3
uses a byteshift operation, which is best for old compilers which don't inlinememcpy()
or big-endian systems without a byteswap instructionXXH_FORCE_ALIGN_CHECK
: Use a faster direct read path when input is aligned. This option can result in dramatic performance improvement when input to hash is aligned on 32 or 64-bit boundaries, when running on architectures unable to load memory from unaligned addresses, or suffering a performance penalty from it. It is (slightly) detrimental on platform with good unaligned memory access performance (same instruction for both aligned and unaligned accesses). This option is automatically disabled onx86
,x64
andaarch64
, and enabled on all other platforms.XXH_VECTOR
: manually select a vector instruction set (default: auto-selected at compilation time). Available instruction sets areXXH_SCALAR
,XXH_SSE2
,XXH_AVX2
,XXH_AVX512
,XXH_NEON
andXXH_VSX
. Compiler may require additional flags to ensure proper support (for example,gcc
on linux will require-mavx2
for AVX2, and-mavx512f
for AVX512).XXH_NO_PREFETCH
: disable prefetching. Some platforms or situations may perform better without prefetching. XXH3 only.XXH_PREFETCH_DIST
: select prefetching distance. For close-to-metal adaptation to specific hardware platforms. XXH3 only.XXH_NO_STREAM
: Disables the streaming API, limiting it to single shot variants only.XXH_SIZE_OPT
:0
: default, optimize for speed1
: default for-Os
and-Oz
: disables some speed hacks for size optimization2
: makes code as small as possible, performance may cryXXH_NO_INLINE_HINTS
: By default, xxHash uses__attribute__((always_inline))
and__forceinline
to improve performance at the cost of code size. Defining this macro to 1 will mark all internal functions asstatic
, allowing the compiler to decide whether to inline a function or not. This is very useful when optimizing for smallest binary size, and is automatically defined when compiling with-O0
,-Os
,-Oz
, or-fno-inline
on GCC and Clang. This may also increase performance depending on compiler and architecture.XXH32_ENDJMP
: Switch multi-branch finalization stage of XXH32 by a single jump. This is generally undesirable for performance, especially when hashing inputs of random sizes. But depending on exact architecture and compiler, a jump might provide slightly better performance on small inputs. Disabled by default.XXH_NO_STDLIB
: Disable invocation of<stdlib.h>
functions, notablymalloc()
andfree()
.libxxhash
'sXXH*_createState()
will always fail and returnNULL
. But one-shot hashing (likeXXH32()
) or streaming using statically allocated states still work as expected. This build flag is useful for embedded environments without dynamic allocation.XXH_STATIC_LINKING_ONLY
: gives access to internal state declaration, required for static allocation. Incompatible with dynamic linking, due to risks of ABI changes.XXH_NO_XXH3
: removes symbols related toXXH3
(both 64 & 128 bits) from generated binary. Useful to reduce binary size, notably for applications which do not useXXH3
.XXH_NO_LONG_LONG
: removes compilation of algorithms relying on 64-bit types (XXH3 and XXH64). Only XXH32 will be compiled. Useful for targets (architectures and compilers) without 64-bit support.XXH_IMPORT
: MSVC specific: should only be defined for dynamic linking, as it prevents linkage errors.XXH_CPU_LITTLE_ENDIAN
: By default, endianness is determined by a runtime test resolved at compile time. If, for some reason, the compiler cannot simplify the runtime test, it can cost performance. It's possible to skip auto-detection and simply state that the architecture is little-endian by setting this macro to 1. Setting it to 0 states big-endian.XXH_DEBUGLEVEL
: When set to any value >= 1, enablesassert()
statements. This (slightly) slows down execution, but may help finding bugs during debugging sessions.
When compiling the Command Line Interface xxhsum
with make
, the following environment variables can also be set :
DISPATCH=1
: usexxh_x86dispatch.c
, to automatically select betweenscalar
,sse2
,avx2
oravx512
instruction set at runtime, depending on local host. This option is only valid forx86
/x64
systems.
You can download and install xxHash using the vcpkg dependency manager:
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install xxhash
The xxHash port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please create an issue or pull request on the vcpkg repository.
You can work on xxHash and depend on it in your tipi.build projects by adding the following entry to your .tipi/deps
:
{
"Cyan4973/xxHash": { "@": "v0.8.1" }
}
An example of such usage can be found in the /cli
folder of this project which, if built as root project will depend on the release v0.8.1
of xxHash
To contribute to xxHash itself use tipi.build on this repository (change the target name appropriately to linux
or macos
or windows
):
tipi . -t <target> --test all
The simplest example calls xxhash 64-bit variant as a one-shot function generating a hash value from a single buffer, and invoked from a C/C++ program:
#include "xxhash.h"
(...)
XXH64_hash_t hash = XXH64(buffer, size, seed);
}
Streaming variant is more involved, but makes it possible to provide data incrementally:
#include "stdlib.h" /* abort() */
#include "xxhash.h"
XXH64_hash_t calcul_hash_streaming(FileHandler fh)
{
/* create a hash state */
XXH64_state_t* const state = XXH64_createState();
if (state==NULL) abort();
size_t const bufferSize = SOME_SIZE;
void* const buffer = malloc(bufferSize);
if (buffer==NULL) abort();
/* Initialize state with selected seed */
XXH64_hash_t const seed = 0; /* or any other value */
if (XXH64_reset(state, seed) == XXH_ERROR) abort();
/* Feed the state with input data, any size, any number of times */
(...)
while ( /* some data left */ ) {
size_t const length = get_more_data(buffer, bufferSize, fh);
if (XXH64_update(state, buffer, length) == XXH_ERROR) abort();
(...)
}
(...)
/* Produce the final hash value */
XXH64_hash_t const hash = XXH64_digest(state);
/* State could be re-used; but in this example, it is simply freed */
free(buffer);
XXH64_freeState(state);
return hash;
}
The library files xxhash.c
and xxhash.h
are BSD licensed.
The utility xxhsum
is GPL licensed.
Beyond the C reference version, xxHash is also available from many different programming languages, thanks to great contributors. They are listed here.
Many distributions bundle a package manager
which allows easy xxhash installation as both a libxxhash
library
and xxhsum
command line interface.
- Takayuki Matsuoka, aka @t-mat, for creating
xxhsum -c
and great support during early xxh releases - Mathias Westerdahl, aka @JCash, for introducing the first version of
XXH64
- Devin Hussey, aka @easyaspi314, for incredible low-level optimizations on
XXH3
andXXH128