Skip to content

FAST 32/64 bit PRNG (pseudo-random generator), highly optimized, based on xoshiro* / xoroshiro*, xorshift and other Marsaglia algorithms.

License

Notifications You must be signed in to change notification settings

GerHobbelt/fastPRNG

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

fastPRNG

fastPRNG is a single header-only FAST 32/64 bit PRNG (pseudo-random generator), highly optimized to obtain faster code from compilers, it's based on xoshiro / xoroshiro (Blackman/Vigna), xorshift and other Marsaglia algorithms.

64bit algorithms

  • Blackman/Vigna
    • xoshiro256+ / xoshiro256++ / xoshiro256**
    • xoroshiro128+ / xoroshiro128++ / xoroshiro128**
  • Marsaglia
    • xorshift
    • znew / wnew / MWC / CNG / FIB / XSH / KISS

32bit algorithms

  • Blackman/Vigna
    • xoshiro128+ / xoshiro128++ / xoshiro128**
    • xoroshiro64+ / xoroshiro64++
  • Marsaglia
    • xorshift
    • znew / wnew / MWC / CNG / FIB / XSH / KISS
    • LFIB4 / SWB

 

fastPRNG distribution tests - live WebGL

All functions are tested, below the distribution test screenshots in a cube with [-1.0, 1.0] side (OpenGL/WebGL)

30M dots/spheres
30M dots/spheres
clipping planes
3 thin boards
from 30M cube dots/spheres
sShot_20191118_173632 sShot_20191113_43629 sShot_20191112_04710

==>  *view the Live WebGL distribution test section.

 

Return values and floating point

All base functions return integers:

  • 32bit ==> uint32_t in [0, UINT32_MAX] interval
  • 64bit ==> uint64_t in [0, UINT64_MAX] interval.

*If you need (e.g.) values between [INT32_MIN, INT32_MAX], just cast result to int32_t, same for 64bit (cast to int64_t): look at the examples below

Floating point helpers

  • There are a single/double precision floating point template functions, to generate fast numbers in:
      (they have same base name, but with the following suffix)
    • [-1.0, 1.0] interval ==> suffix _VNI<T> (Vector Normalized Interval)
    • [ 0.0, 1.0] interval ==> suffix _UNI<T> (Unity Normalized Interval)
    • [ min, max] interval ==> suffix _Range<T>(min, max)

*look at the examples below

 

How to use - Examples

To use it just include fastPRNG.h in your code:

#include "fastPRNG.h"

It contains following classes and member functions, inside the namespace fastPRNG:

64bit classes and members

  • fastXS64 ==> contains xor-shift algorithms
    • xoshiro256p / xoshiro256pp / xoshiro256xx
    • xoroshiro128p / xoroshiro128pp / xoroshiro128xx
    • xorShift
  • fastXS64s ==> same as before, but class with static members, to use directly w/o declaration
    • fastXS64s::xoshiro256p / fastXS64s::xoshiro256pp / fastXS64s::xoshiro256xx
    • fastXS64s::xoroshiro128p / fastXS64s::xoroshiro128pp / fastXS64s::xoroshiro128xx
    • fastXS64s::xorShift
  • fastRand64 ==> other Marsaglia algorithms
    • znew / wnew / MWC / CNG / FIB / XSH / KISS

32bit classes and members

  • fastXS32 ==> contains xor-shift algorithms
    • xoshiro128p / xoshiro128pp / xoshiro128xx
    • xoroshiro64p / xoroshiro64pp
    • xorShift
  • fastXS32s ==> same as before, but class with static members, to use directly w/o declaration
    • fastXS32s::xoshiro128p / fastXS32s::xoshiro128pp / fastXS32s::xoshiro128xx
    • fastXS32s::xoroshiro64p / fastXS32s::xoroshiro64pp
    • fastXS32s::xorShift
  • fastRand32 ==> other Marsaglia algorithms
    • znew / wnew / MWC / CNG / FIB / XSH / KISS
    • LFIB4 / SWB

Examples

  • Example: use xoshiro256+ 64bit algorithm:
    using fastPRNG;

    fastXS64 fastR; // default "chrono" seed
//  fastXS64 fastR(0x123456789ABCDEF0); // personal seed also to (re)generate a specific random numbers sequence

    for(int i=0; i<10000; i++) {
        cout <<         fastR.xoshiro256p()  << endl;    // returns number in [0, UINT64_MAX] interval
        cout << int64_t(fastR.xoshiro256p()) << endl;    // returns number in [INT64_MIN, INT32_MAX] interval
        cout << fastR.xoshiro256p_VNI<float>()) << endl; // returns number in [-1.0, 1.0] interval in single precision
        cout << fastR.xoshiro256p_UNI<float>()) << endl; // returns number in [ 0.0, 1.0] interval in single precision
        cout << fastR.xoshiro256p_Range<double>(-3.0, 7.0)) << endl; // returns number in [-3.0, 7.0] interval in double precision
    }
//  N.B. all members/functions share same seed and subsequent xor & shift operations on it.
//       it is usually not a problem, but if need different seeds (or separate PRNG) have to declare 
//       more/different fastXS64 objects

//  or you can also use static members from fastXS64s class w/o declaration: the seed is always "chrono"
    for(int i=0; i<10000; i++) {
        cout <<         fastXS64s::xoshiro256p()  << endl;   // returns number in [0, UINT64_MAX] interval
        cout << int64_t(fastXS64s::xoshiro256p()) << endl;   // returns number in [INT64_MIN, INT32_MAX] interval
        cout << fastXS64s::xoshiro256p_VNI<float>()) << endl;// returns number in [-1.0, 1.0] interval in single precision from 64bit PRNG
        cout << fastXS64s::xoshiro256p_UNI<float>()) << endl;// returns number in [ 0.0, 1.0] interval in single precision from 64bit PRNG
        cout << fastXS64s::xoshiro256p_Range<double>(-5.0, 5.0)) << endl; // returns number in [-5.0, 5.0] interval in double precision from 64bit PRNG
    }
//  N.B. all members/functions share same seed, and subsequent xor & shift operations on it.
//       it is usually not a problem, but if need different seeds (or separate PRNG) have to use 
//       fastXS64 (non static) class, and have to declare different fastXS64 objects.

// static declaration of a non static class (e.g. if you need to initialize it to specific seed)
    for(int i=0; i<10000; i++) {
        static fastXS64 fastR(0x123456789ABCDEF0); // personal seed also to (re)generate a specific random numbers sequence
        cout <<         fastR.xoshiro256p()  << endl;    // returns number in [0, UINT64_MAX] interval
        cout << int64_t(fastR.xoshiro256p()) << endl;    // returns number in [INT64_MIN, INT32_MAX] interval
        cout << fastR.xoshiro256p_VNI<float>()) << endl; // returns number in [-1.0, 1.0] interval in single precision
        cout << fastR.xoshiro256p_UNI<float>()) << endl; // returns number in [ 0.0, 1.0] interval in single precision
        cout << fastR.xoshiro256p_Range<double>(-3.0, 7.0)) << endl; // returns number in [-3.0, 7.0] interval in double precision
    }

  • Example: use KISS 32bit algorithm:
    fastPRNG::fastRand32 fastRandom; // for 32bit
//  fstRnd::fastRand32 fastRandom(0x12345678); or with seed initialization: to (re)generate a specific random numbers sequence 
    for(int i=0; i<10000; i++) {
        cout <<         fastRandom.KISS()  << endl;   // returns number in [0, UINT32_MAX] interval
        cout << int32_t(fastRandom.KISS()) << endl;   // returns number in [INT32_MIN, INT32_MAX] interval
        cout << fastRandom.KISS_VNI<float>()) << endl;// returns number in [-1.0, 1.0] interval in single precision from 32bit PRNG
        cout << fastRandom.KISS_UNI<float>()) << endl;// returns number in [ 0.0, 1.0] interval in single precision  from 32bit PRNG
        cout << fastRandom.KISS_Range<double>(-3.0, 7.0)) << endl; // returns number in [-3.0, 7.0] interval in from 32bit PRNG
    }
  • Any class object can to re-initialized with a new seed calling seed()
    fastPRNG::fastXS32 fastR(0x12345678); // seed to specific value

    for(int i=0; i<10000; i++) 
        cout << fastR.xoshiro256p()  << endl;   // returns number in [0, UINT64_MAX] interval

    fastR.seed(0x12345678); // same seed to obtain same sequence
    for(int i=0; i<10000; i++) 
        cout << fastR.xoshiro256p()  << endl;   // returns same number sequence in [0, UINT64_MAX] interval

    fastR.seed(); // new seed to 'chrono" to obtain different sequence
    for(int i=0; i<10000; i++) 
        cout << fastR.xoshiro256p()  << endl;   // returns number in [0, UINT64_MAX] interval

*classes fastXS32s and fastXS64s don't have seed() function: they have/are only static members.

For more details look at the source file: it's well documented.

 

Where it is used

Classes and functions are currently used

Hypercomplex fractals with stochastic IIM
(Inverse Iteration Method) algorithm
DLA 3D (Diffusion Limited Aggregation) algorithm

 

Distribution Test

All functions are tested, below the distribution test in a cube with [-1.0, 1.0] side.

Live WebGL 2 / WebAssemly ==> fastPRNG distribution test
*Only FireFox and Chromium based web-browsers (Chrome / Opera / new Edge / etc.) are supported

30M dots/spheres cube 30M dots/spheres cube
with clipping planes
3 thin boards
from 30M dots cube
sShot_20191118_173632 sShot_20191113_43629 sShot_20191112_04710
thin board
from a 10M dots cube
2.5M dots/spheres
with clipping planes
3 thin boards
from 5M dots cube
sShot_20191118_173632 sShot_20191113_43629 sShot_20191112_04710

*It's builded on the rendering particles engine of glChAoS.P / wglChAoS.P

*N.B. it's a distribution test, NOT a speed/benchmark test, since the rendering time/calculus is preeminent

Using distribution live WebGL test

The JavaScript / WebGL version is slower of Desktop one, so the test starts with 2.5M of particles, and a pre-allocated maxbuffer of 15M (for slow / low memory GPUs)

Particles panel
A) Start / Stop particles emitter
B) Continue / FullStop: continue endless (circular buffer) / stop when buffer is full
C) Endless / Restart: rewrite circular buffer / restart deleting all circular buffer
D) Set circular buffer size (drag with mouse)
          from .01M (10'000) to maxbuffer (default 15M pre-allocated) particles

*You can resize pre-allocated buffer changing the URL value of maxbuffer (in your browser address box) (e.g. maxbuffer=30 pre allocate a 30M particles memory buffer)

Desktop

If you want use the desktop version (available for Windows / Linux / MacOS), please download glChAoS.P / wglChAoS.P and build it with -DGLCHAOSP_TEST_RANDOM_DISTRIBUTION or enable the #define GLCHAOSP_TEST_RANDOM_DISTRIBUTION in attractorsBase.h file

About

FAST 32/64 bit PRNG (pseudo-random generator), highly optimized, based on xoshiro* / xoroshiro*, xorshift and other Marsaglia algorithms.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 100.0%