- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the dvc.yaml
- Update the app.py
Clone the repository
https://github.com/GauravPahwa2021/Kidney_Disease_Prediction
conda create -n cnncls python=3.8 -y
conda activate cnncls
pip install -r requirements.txt
# Finally run the following command
python app.py
Now,
open up you local host and port
- mlflow ui
MLFLOW_TRACKING_URI=https://dagshub.com/GauravPahwa2021/Kidney_Disease_Prediction.mlflow
MLFLOW_TRACKING_USERNAME=GauravPahwa2021
MLFLOW_TRACKING_PASSWORD=34255e2baf836bf6327d7bb761b9ef93d83d0201
python script.py
Run this to export as env variables:
export MLFLOW_TRACKING_URI=https://dagshub.com/GauravPahwa2021/Kidney_Disease_Prediction.mlflow
export MLFLOW_TRACKING_USERNAME=GauravPahwa2021
export MLFLOW_TRACKING_PASSWORD=34255e2baf836bf6327d7bb761b9ef93d83d0201
- dvc init
- dvc repro
- dvc dag
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)