Skip to content

Commit

Permalink
Better variable names and cleaner print statements
Browse files Browse the repository at this point in the history
  • Loading branch information
Saransh-cpp committed Jul 28, 2022
1 parent 0655b4b commit a8f4788
Showing 1 changed file with 34 additions and 35 deletions.
69 changes: 34 additions & 35 deletions docs/src/getting_started/linear_regression.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,8 +71,8 @@ model(W, b, x) = Wx + b
where `W` is the weight matrix and `b` is the bias. For our case, the weight matrix (`W`) would constitute only a single element, as we have only a single feature. We can define our model in `Julia` using the exact same notation!

```jldoctest linear_regression_simple
julia> model(W, b, x) = @. W*x + b
model (generic function with 1 method)
julia> custom_model(W, b, x) = @. W*x + b
custom_model (generic function with 1 method)
```

The `@.` macro allows you to perform the calculations by broadcasting the scalar quantities (for example - the bias).
Expand All @@ -92,22 +92,22 @@ julia> b = [0.0f0]
Time to test if our model works!

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> model(W, b, x) |> size
julia> custom_model(W, b, x) |> size
(1, 61)
julia> model(W, b, x)[1], y[1]
julia> custom_model(W, b, x)[1], y[1]
(-1.6116865f0, -7.0f0)
```

It does! But the predictions are way off. We need to train the model to improve the predictions, but before training the model we need to define the loss function. The loss function would ideally output a quantity that we will try to minimize during the entire training process. Here we will use the mean sum squared error loss function.

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> function loss(W, b, x, y)
ŷ = model(W, b, x)
julia> function custom_loss(W, b, x, y)
ŷ = custom_model(W, b, x)
sum((y .- ŷ).^2) / length(x)
end;
julia> loss(W, b, x, y)
julia> custom_loss(W, b, x, y)
23.772217f0
```

Expand Down Expand Up @@ -140,12 +140,12 @@ julia> flux_model(x)[1], y[1]
It is! The next step would be defining the loss function using `Flux`'s functions -

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> function flux_loss(x, y)
julia> function flux_loss(flux_model, x, y)
ŷ = flux_model(x)
Flux.mse(ŷ, y)
end;
julia> flux_loss(x, y)
julia> flux_loss(flux_model, x, y)
22.74856f0
```

Expand All @@ -161,7 +161,7 @@ julia> W = Float32[1.1412252]
To check how both the models are performing on the data, let's find out the losses using the `loss` and `flux_loss` functions -

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> loss(W, b, x, y), flux_loss(x, y)
julia> custom_loss(W, b, x, y), flux_loss(flux_model, x, y)
(22.74856f0, 22.74856f0)
```

Expand All @@ -182,9 +182,8 @@ The derivatives are calculated using an Automatic Differentiation tool, and `Flu

Our first step would be to obtain the gradient of the loss function with respect to the weights and the biases. `Flux` re-exports `Zygote`'s `gradient` function; hence, we don't need to import `Zygote` explicitly to use the functionality.

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> dLdW, dLdb, _, _ = gradient(loss, W, b, x, y)
(Float32[-6.7322206], Float32[-4.132563], Float32[0.1926041 0.14162663 … -0.39782608 -0.29997927], Float32[-0.16876957 -0.12410051 … 0.3485956 0.2628572])
```jldoctest linear_regression_simple
julia> dLdW, dLdb, _, _ = gradient(custom_loss, W, b, x, y);
```

We can now update the parameters, following the gradient descent algorithm -
Expand All @@ -202,7 +201,7 @@ julia> b .= b .- 0.1 .* dLdb
The parameters have been updated! We can now check the value of the loss function -

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> loss(W, b, x, y)
julia> custom_loss(W, b, x, y)
17.157953f0
```

Expand All @@ -211,26 +210,26 @@ The loss went down! This means that we successfully trained our model for one ep
Let's plug our super training logic inside a function and test it again -

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> function train_model()
dLdW, dLdb, _, _ = gradient(loss, W, b, x, y)
julia> function train_custom_model()
dLdW, dLdb, _, _ = gradient(custom_loss, W, b, x, y)
@. W = W - 0.1 * dLdW
@. b = b - 0.1 * dLdb
end;
julia> train_model();
julia> train_custom_model();
julia> W, b, loss(W, b, x, y)
julia> W, b, custom_loss(W, b, x, y)
(Float32[2.340657], Float32[0.7516814], 13.64972f0)
```

It works, and the loss went down again! This was the second epoch of our training procedure. Let's plug this in a for loop and train the model for 30 epochs.

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> for i = 1:30
train_model()
train_custom_model()
end
julia> W, b, loss(W, b, x, y)
julia> W, b, custom_loss(W, b, x, y)
(Float32[4.2408285], Float32[2.243728], 7.668049f0)
```

Expand All @@ -239,7 +238,7 @@ There was a significant reduction in loss, and the parameters were updated!
`Flux` provides yet another convenience functionality, the [`Flux.@epochs`](@ref) macro, which can be used to train a model for a specific number of epochs.

```jldoctest linear_regression_simple; filter = r"[+-]?([0-9]*[.])?[0-9]+"
julia> Flux.@epochs 10 train_model()
julia> Flux.@epochs 10 train_custom_model()
[ Info: Epoch 1
[ Info: Epoch 2
[ Info: Epoch 3
Expand All @@ -251,7 +250,7 @@ julia> Flux.@epochs 10 train_model()
[ Info: Epoch 9
[ Info: Epoch 10
julia> W, b, loss(W, b, x, y)
julia> W, b, custom_loss(W, b, x, y)
(Float32[4.2422233], Float32[2.2460847], 7.6680417f0)
```

Expand Down Expand Up @@ -428,30 +427,30 @@ x = x .* reshape(rand(Float32, 61), (1, 61))
plot(reshape(x, (61, 1)), reshape(y, (61, 1)), lw = 3, seriestype = :scatter, label = "", title = "Generated data", xlabel = "x", ylabel= "y")

# custom model and parameters
model(W, b, x) = @. W*x + b
custom_model(W, b, x) = @. W*x + b
W = rand(Float32, 1, 1)
b = [0.0f0]

# loss function
function loss(model, x, y)
ŷ = model(x)
function custom_loss(W, b, x, y)
ŷ = custom_model(W, b, x)
sum((y .- ŷ).^2) / length(x)
end;

print("Initial loss", loss(model, x, y), "\n")
print("Initial loss: ", custom_loss(W, b, x, y), "\n")

# train
function train_model()
dLdW, dLdb, _, _ = gradient(loss, W, b, x, y)
function train_custom_model()
dLdW, dLdb, _, _ = gradient(custom_loss, W, b, x, y)
@. W = W - 0.1 * dLdW
@. b = b - 0.1 * dLdb
end

for i = 1:40
train_model()
train_custom_model()
end

print("Final loss", loss(model, x, y), "\n")
print("Final loss: ", custom_loss(W, b, x, y), "\n")

# plot data and results
plot(reshape(x, (61, 1)), reshape(y, (61, 1)), lw = 3, seriestype = :scatter, label = "", title = "Simple Linear Regression", xlabel = "x", ylabel= "y")
Expand All @@ -477,18 +476,18 @@ function loss(model, x, y)
Flux.mse(ŷ, y)
end;

print("Initial loss", loss(model, x_train_n, y_train), "\n")
print("Initial loss: ", loss(model, x_train_n, y_train), "\n")

# train
function train_model()
function train_custom_model()
dLdm, _, _ = gradient(loss, model, x, y)
@. model.weight = model.weight - 0.000001 * dLdm.weight
@. model.bias = model.bias - 0.000001 * dLdm.bias
end

loss_init = Inf;
while true
train_model()
train_custom_model()
if loss_init == Inf
loss_init = loss(model, x_train_n, y_train)
continue
Expand All @@ -500,9 +499,9 @@ while true
end
end

print("Final loss", loss(model, x_train_n, y_train), "\n")
print("Final loss: ", loss(model, x_train_n, y_train), "\n")

# test
x_test_n = Flux.normalise(x_test);
print("Test loss", loss(model, x_test_n, y_test), "\n")
print("Test loss: ", loss(model, x_test_n, y_test), "\n")
```

0 comments on commit a8f4788

Please sign in to comment.