Skip to content
forked from mat701/BiCM

Python package for the computation of the Bipartite Configuration Model.

License

Notifications You must be signed in to change notification settings

EmilianoMarchese/BiCM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BiCM package.

This is a Python package for the computation of the maximum entropy bipartite configuration model (BiCM) and the projection of bipartite networks on one layer. It was developed with Python 3.5.

You can install this package via pip:

pip install bicm

Documentation is available at https://bipartite-configuration-model.readthedocs.io/en/latest/.

For more solvers of maximum entropy configuration models visit https://meh.imtlucca.it/

Basic functionalities

To install:

pip install bicm

To import the module:

import bicm

To generate a Graph object and initialize it (with a biadjacency matrix, edgelist or degree sequences):

from bicm import BipartiteGraph
myGraph = BipartiteGraph()
myGraph.set_biadjacency_matrix(my_biadjacency_matrix)
myGraph.set_adjacency_list(my_adjacency_list)
myGraph.set_edgelist(my_edgelist)
myGraph.set_degree_sequences((first_degree_sequence, second_degree_sequence))

Or alternatively, with the respective data structure as input:

from bicm import BipartiteGraph
myGraph = BipartiteGraph(biadjacency=my_biadjacency_matrix, adjacency_list=my_adjacency_list, edgelist=my_edgelist, degree_sequences=((first_degree_sequence, second_degree_sequence)))

To compute the BiCM probability matrix of the graph or the relative fitnesses coefficients as dictionaries containing the nodes names as keys:

my_probability_matrix = myGraph.get_bicm_matrix()
my_x, my_y = myGraph.get_bicm_fitnesses()

This will solve the bicm using recommended settings for the solver. To customize the solver you can alternatively use (in advance) the following method:

myGraph.solve_bicm(light_mode=False, method='newton', initial_guess=None, tolerance=1e-8, max_steps=None, verbose=False, linsearch=True, regularise=False, print_error=True, exp=False)

To get the rows or columns projection of the graph:

myGraph.get_rows_projection()
myGraph.get_cols_projection()

Alternatively, to customize the projection:

myGraph.compute_projection(rows=True, alpha=0.05, method='poisson', threads_num=4, progress_bar=True)

See a more detailed walkthrough in tests/bicm_tests notebook or python script, or check out the API in the documentation.

How to cite

If you use the bicm module, please cite its location on Github https://github.com/mat701/BiCM and the original articles [Saracco2015] and [Saracco2017].

References

[Saracco2015] F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015).

[Saracco2017] F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, and T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, New J. Phys. 19, 053022 (2017)

[Squartini2011] T. Squartini, D. Garlaschelli, Analytical maximum-likelihood method to detect patterns in real networks, New Journal of Physics 13, (2011)

About

Python package for the computation of the Bipartite Configuration Model.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 81.6%
  • Jupyter Notebook 18.4%