-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* [docs] Draft for distance example * Change color and line style of the distance line
- Loading branch information
Showing
1 changed file
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
""" | ||
Distance between splines | ||
------------------------ | ||
In this example, we compute the euclidean distance between two splines. | ||
""" | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import scipy | ||
import splinebox | ||
|
||
# %% | ||
# For simplicity we create a function that can plot the two splines and the | ||
# distance between the splines at parameter values t_min and s_min. | ||
|
||
|
||
def plot_splines(spline1, spline2, t_min=None, s_min=None): | ||
vals1 = spline1.eval(np.linspace(0, spline1.M, 1000)) | ||
vals2 = spline2.eval(np.linspace(0, spline2.M, 1000)) | ||
knots1 = spline1.knots | ||
knots2 = spline2.knots | ||
|
||
plt.plot(vals1[:, 1], vals1[:, 0]) | ||
plt.plot(vals2[:, 1], vals2[:, 0]) | ||
plt.scatter(knots1[:, 1], knots1[:, 0]) | ||
plt.scatter(knots2[:, 1], knots2[:, 0]) | ||
|
||
if t_min is not None and s_min is not None: | ||
point1 = spline1.eval(t_min) | ||
point2 = spline2.eval(s_min) | ||
plt.plot([point1[1], point2[1]], [point1[0], point2[0]], color="k", linestyle="--") | ||
|
||
plt.gca().set_aspect("equal", "box") | ||
|
||
plt.show() | ||
|
||
|
||
# %% | ||
# We start by constructing two arbitrary closed splines. | ||
|
||
basis_function = splinebox.basis_functions.B3() | ||
M = 5 | ||
spline1 = splinebox.spline_curves.Spline(M=M, basis_function=basis_function, closed=True) | ||
spline2 = splinebox.spline_curves.Spline(M=M, basis_function=basis_function, closed=True) | ||
|
||
spline1.control_points = np.array( | ||
[ | ||
[1, 2], | ||
[2, 2], | ||
[3, 2.5], | ||
[2.2, 3], | ||
[1.3, 2.2], | ||
] | ||
) | ||
|
||
spline2.control_points = np.array( | ||
[ | ||
[2, -2], | ||
[2.5, -1], | ||
[2, -1.5], | ||
[1.5, -1], | ||
[1, -2], | ||
] | ||
) | ||
|
||
# %% | ||
# Plot the splines | ||
plot_splines(spline1, spline2) | ||
|
||
# %% | ||
# To get an initial guess of the spline parameter pair with the | ||
# smallest distance, we perform a brute force search. | ||
# Note: This can be made more accurate by increasing the number | ||
# of parameters we interogate. | ||
|
||
t = np.linspace(0, spline1.M, 5) | ||
s = np.linspace(0, spline2.M, 5) | ||
vals1 = spline1.eval(t) | ||
vals2 = spline2.eval(s) | ||
distance_vectors = vals1[:, np.newaxis] - vals2[np.newaxis, :] | ||
distances = np.linalg.norm(distance_vectors, axis=-1) | ||
indices = np.unravel_index(np.argmin(distances), distances.shape) | ||
t_min = t[indices[0]] | ||
s_min = s[indices[1]] | ||
|
||
plot_splines(spline1, spline2, t_min, s_min) | ||
|
||
# %% | ||
# To further refine the estimate we can | ||
# run an optimization. | ||
|
||
|
||
def distance(parameters): | ||
val1 = spline1.eval(parameters[0]) | ||
val2 = spline2.eval(parameters[1]) | ||
return np.linalg.norm(val1 - val2) | ||
|
||
|
||
result = scipy.optimize.minimize(distance, np.array([t_min, s_min]), bounds=((0, spline1.M), (0, spline2.M))) | ||
t_min, s_min = result.x | ||
|
||
plot_splines(spline1, spline2, t_min, s_min) |