Skip to content

DaniMeier/Frobenius

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Frobenius

In the paper [provide reference], we introduce the following primality test:

  • (1) Test whether $n$ is a square. If it is, declare $n$ to be composite and stop.
  • (2) Set $a=1, 3, 5, \ldots$ such that the Jacobi symbol of $a^2-4$ over $n$ is $-1$, and then set $T=1, 2, 3, \ldots$ and $Q=T^2+aT+1$ such that $Q \neq |a^2-4|$ and the Jacobi symbol of $Q$ over $n$ is $-1$. If $\gcd\left((a^2-4)(a+2T)Q,n\right) \neq 1$ throughout the search, declare $n$ to be composite and stop.
  • (3) If $Q^{(n-1)/2} \neq -1 \pmod{n}$, declare $n$ to be composite and stop.
  • (4) If $s_n\neq -1 \pmod{n}$ or $t_n\neq a+T\pmod{n}$, declare $n$ to be composite and stop.
  • (5) If $n$ is not declared composite in steps (1) to (4), declare $n$ to be a probable prime.

In this repository, we provide the underlying code and results.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published