Skip to content

Commit

Permalink
[Docusaurus] Add assets after accidental removal
Browse files Browse the repository at this point in the history
Accidentally deleted in ea72cfe
  • Loading branch information
CristianLara committed Nov 26, 2024
1 parent ea72cfe commit 88182f4
Show file tree
Hide file tree
Showing 12 changed files with 8,032 additions and 0 deletions.
Binary file added docs/assets/bandit_allocation.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/assets/bo_1d_opt.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
6,302 changes: 6,302 additions & 0 deletions docs/assets/contour.js

Large diffs are not rendered by default.

342 changes: 342 additions & 0 deletions docs/assets/cv.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,342 @@
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/

function getPlotData() {
const data = {
data: [
{
type: 'scatter',
x: [-23.94896727832828, 176.11536218851342],
y: [-23.94896727832828, 176.11536218851342],
line: {color: 'black', width: 2, dash: 'dot'},
mode: 'lines',
hoverinfo: 'none',
visible: true,
showlegend: false,
},
{
type: 'scatter',
x: [
24.129964413622268,
78.863835999175,
10.325915083003967,
98.68064045456067,
26.449512503021804,
31.321658517480987,
132.44958166552067,
86.10574699756219,
16.326252826011096,
70.60758289753784,
66.7077438958342,
32.8083830521407,
21.424386764652148,
166.3236985012143,
33.738344621143135,
2.5808075578294103,
22.383482484999874,
98.34760790686913,
136.34953133391176,
18.111011269006838,
4.47623958200588,
8.57972117932429,
15.473497571024838,
18.882901179508327,
18.419596839926022,
140.32747319783857,
4.323605035294334,
59.69046760890842,
130.64996148022834,
83.88052752898044,
9.320218587634006,
34.736739987996074,
26.624171220014905,
40.64753379393727,
21.110094161886266,
34.68741610290739,
21.127854002025494,
41.77178986158392,
44.753611366285824,
6.954951737223514,
],
y: [
23.831776096464477,
82.815707961073,
10.747738322645574,
93.69829512978934,
26.432574704476966,
31.35967829299479,
116.20058472252121,
91.6818866635887,
15.974232531635408,
68.11476070585482,
63.42229225469963,
32.69640422664021,
20.24231363712022,
160.96833987278927,
34.15918174538901,
3.308923677197356,
22.386752122774006,
98.7539713900891,
136.19881092376096,
18.244226159530488,
9.79588933833206,
7.056956465524408,
17.516872697880356,
17.60009504000769,
14.158474373680775,
135.93053175106166,
5.0976161658316315,
61.761843402428816,
130.0742203332636,
83.86609875877086,
9.538169968235806,
34.29767048938933,
26.06853258522539,
39.04517735047875,
20.75554971204689,
34.60573727215491,
21.215247383903154,
45.86726085341013,
45.35997743936865,
8.151709494803775,
],
marker: {color: 'rgba(128,177,211,1)'},
mode: 'markers',
name: 'In-sample',
text: [
'<b>Arm 0_0</b><br><br>Actual Outcome: 24.13 [20.210, 28.050]<br>Predicted Outcome: 23.832 [19.052, 28.612]<br><br><em>Parameterization:</em><br>x1: 2.5<br>x2: 7.5',
'<b>Arm 0_23</b><br><br>Actual Outcome: 78.864 [74.944, 82.784]<br>Predicted Outcome: 82.816 [75.455, 90.176]<br><br><em>Parameterization:</em><br>x1: -2.65625<br>x2: 2.34375',
'<b>Arm 0_38</b><br><br>Actual Outcome: 10.326 [6.406, 14.246]<br>Predicted Outcome: 10.748 [4.277, 17.218]<br><br><em>Parameterization:</em><br>x1: -2.421875<br>x2: 13.359375',
'<b>Arm 0_26</b><br><br>Actual Outcome: 98.681 [94.761, 102.601]<br>Predicted Outcome: 93.698 [78.760, 108.636]<br><br><em>Parameterization:</em><br>x1: 1.09375<br>x2: 13.59375',
'<b>Arm 0_27</b><br><br>Actual Outcome: 26.45 [22.530, 30.370]<br>Predicted Outcome: 26.433 [21.928, 30.937]<br><br><em>Parameterization:</em><br>x1: -0.78125<br>x2: 4.21875',
'<b>Arm 0_10</b><br><br>Actual Outcome: 31.322 [27.402, 35.242]<br>Predicted Outcome: 31.36 [25.553, 37.166]<br><br><em>Parameterization:</em><br>x1: 1.5625<br>x2: 8.4375',
'<b>Arm 0_31</b><br><br>Actual Outcome: 132.45 [128.530, 136.370]<br>Predicted Outcome: 116.201 [101.618, 130.784]<br><br><em>Parameterization:</em><br>x1: -4.296875<br>x2: 3.984375',
'<b>Arm 0_32</b><br><br>Actual Outcome: 86.106 [82.186, 90.026]<br>Predicted Outcome: 91.682 [82.308, 101.056]<br><br><em>Parameterization:</em><br>x1: 3.203125<br>x2: 11.484375',
'<b>Arm 0_35</b><br><br>Actual Outcome: 16.326 [12.406, 20.246]<br>Predicted Outcome: 15.974 [10.828, 21.120]<br><br><em>Parameterization:</em><br>x1: 1.328125<br>x2: 2.109375',
'<b>Arm 0_30</b><br><br>Actual Outcome: 70.608 [66.688, 74.528]<br>Predicted Outcome: 68.115 [55.976, 80.253]<br><br><em>Parameterization:</em><br>x1: -4.53125<br>x2: 7.96875',
'<b>Arm 0_39</b><br><br>Actual Outcome: 66.708 [62.788, 70.628]<br>Predicted Outcome: 63.422 [54.074, 72.770]<br><br><em>Parameterization:</em><br>x1: -1.484375<br>x2: 1.171875',
'<b>Arm 0_11</b><br><br>Actual Outcome: 32.808 [28.888, 36.728]<br>Predicted Outcome: 32.696 [27.648, 37.744]<br><br><em>Parameterization:</em><br>x1: -0.3125<br>x2: 2.8125',
'<b>Arm 0_25</b><br><br>Actual Outcome: 21.424 [17.504, 25.344]<br>Predicted Outcome: 20.242 [11.745, 28.739]<br><br><em>Parameterization:</em><br>x1: 8.59375<br>x2: 6.09375',
'<b>Arm 0_16</b><br><br>Actual Outcome: 166.324 [162.404, 170.244]<br>Predicted Outcome: 160.968 [145.821, 176.115]<br><br><em>Parameterization:</em><br>x1: 3.90625<br>x2: 14.53125',
'<b>Arm 0_7</b><br><br>Actual Outcome: 33.738 [29.818, 37.658]<br>Predicted Outcome: 34.159 [27.580, 40.739]<br><br><em>Parameterization:</em><br>x1: -2.1875<br>x2: 4.6875',
'<b>Arm 0_9</b><br><br>Actual Outcome: 2.581 [-1.339, 6.501]<br>Predicted Outcome: 3.309 [-23.949, 30.567]<br><br><em>Parameterization:</em><br>x1: 9.0625<br>x2: 0.9375',
'<b>Arm 0_2</b><br><br>Actual Outcome: 22.383 [18.463, 26.303]<br>Predicted Outcome: 22.387 [17.479, 27.295]<br><br><em>Parameterization:</em><br>x1: -1.25<br>x2: 11.25',
'<b>Arm 0_12</b><br><br>Actual Outcome: 98.348 [94.428, 102.268]<br>Predicted Outcome: 98.754 [92.785, 104.723]<br><br><em>Parameterization:</em><br>x1: 7.1875<br>x2: 10.3125',
'<b>Arm 0_8</b><br><br>Actual Outcome: 136.35 [132.430, 140.270]<br>Predicted Outcome: 136.199 [129.694, 142.704]<br><br><em>Parameterization:</em><br>x1: 5.3125<br>x2: 12.1875',
'<b>Arm 0_3</b><br><br>Actual Outcome: 18.111 [14.191, 22.031]<br>Predicted Outcome: 18.244 [11.898, 24.590]<br><br><em>Parameterization:</em><br>x1: 0.625<br>x2: 5.625',
'<b>Arm 0_14</b><br><br>Actual Outcome: 4.476 [0.556, 8.396]<br>Predicted Outcome: 9.796 [-12.608, 32.200]<br><br><em>Parameterization:</em><br>x1: -4.0625<br>x2: 14.0625',
'<b>Arm 0_6</b><br><br>Actual Outcome: 8.58 [4.660, 12.500]<br>Predicted Outcome: 7.057 [-0.794, 14.908]<br><br><em>Parameterization:</em><br>x1: -3.125<br>x2: 9.375',
'<b>Arm 0_17</b><br><br>Actual Outcome: 15.473 [11.553, 19.393]<br>Predicted Outcome: 17.517 [10.039, 24.995]<br><br><em>Parameterization:</em><br>x1: 7.65625<br>x2: 3.28125',
'<b>Arm 0_34</b><br><br>Actual Outcome: 18.883 [14.963, 22.803]<br>Predicted Outcome: 17.6 [11.308, 23.893]<br><br><em>Parameterization:</em><br>x1: -0.546875<br>x2: 7.734375',
'<b>Arm 0_33</b><br><br>Actual Outcome: 18.42 [14.500, 22.340]<br>Predicted Outcome: 14.158 [-1.909, 30.226]<br><br><em>Parameterization:</em><br>x1: 6.953125<br>x2: 0.234375',
'<b>Arm 0_4</b><br><br>Actual Outcome: 140.327 [136.407, 144.247]<br>Predicted Outcome: 135.931 [119.081, 152.780]<br><br><em>Parameterization:</em><br>x1: 8.125<br>x2: 13.125',
'<b>Arm 0_29</b><br><br>Actual Outcome: 4.324 [0.404, 8.244]<br>Predicted Outcome: 5.098 [-3.114, 13.309]<br><br><em>Parameterization:</em><br>x1: 2.96875<br>x2: 0.46875',
'<b>Arm 0_36</b><br><br>Actual Outcome: 59.69 [55.770, 63.610]<br>Predicted Outcome: 61.762 [55.675, 67.849]<br><br><em>Parameterization:</em><br>x1: 8.828125<br>x2: 9.609375',
'<b>Arm 0_28</b><br><br>Actual Outcome: 130.65 [126.730, 134.570]<br>Predicted Outcome: 130.074 [124.788, 135.360]<br><br><em>Parameterization:</em><br>x1: 6.71875<br>x2: 11.71875',
'<b>Arm 0_24</b><br><br>Actual Outcome: 83.881 [79.961, 87.801]<br>Predicted Outcome: 83.866 [77.397, 90.336]<br><br><em>Parameterization:</em><br>x1: 4.84375<br>x2: 9.84375',
'<b>Arm 0_19</b><br><br>Actual Outcome: 9.32 [5.400, 13.240]<br>Predicted Outcome: 9.538 [5.048, 14.029]<br><br><em>Parameterization:</em><br>x1: 2.03125<br>x2: 1.40625',
'<b>Arm 0_21</b><br><br>Actual Outcome: 34.737 [30.817, 38.657]<br>Predicted Outcome: 34.298 [30.378, 38.218]<br><br><em>Parameterization:</em><br>x1: 5.78125<br>x2: 5.15625',
'<b>Arm 0_1</b><br><br>Actual Outcome: 26.624 [22.704, 30.544]<br>Predicted Outcome: 26.069 [21.047, 31.090]<br><br><em>Parameterization:</em><br>x1: 6.25<br>x2: 3.75',
'<b>Arm 0_20</b><br><br>Actual Outcome: 40.648 [36.728, 44.568]<br>Predicted Outcome: 39.045 [27.651, 50.440]<br><br><em>Parameterization:</em><br>x1: 9.53125<br>x2: 8.90625',
'<b>Arm 0_22</b><br><br>Actual Outcome: 21.11 [17.190, 25.030]<br>Predicted Outcome: 20.756 [16.629, 24.882]<br><br><em>Parameterization:</em><br>x1: -1.71875<br>x2: 12.65625',
'<b>Arm 0_37</b><br><br>Actual Outcome: 34.687 [30.767, 38.607]<br>Predicted Outcome: 34.606 [29.686, 39.525]<br><br><em>Parameterization:</em><br>x1: 5.078125<br>x2: 5.859375',
'<b>Arm 0_13</b><br><br>Actual Outcome: 21.128 [17.208, 25.048]<br>Predicted Outcome: 21.215 [14.842, 27.589]<br><br><em>Parameterization:</em><br>x1: 3.4375<br>x2: 6.5625',
'<b>Arm 0_15</b><br><br>Actual Outcome: 41.772 [37.852, 45.692]<br>Predicted Outcome: 45.867 [39.979, 51.756]<br><br><em>Parameterization:</em><br>x1: -3.59375<br>x2: 7.03125',
'<b>Arm 0_18</b><br><br>Actual Outcome: 44.754 [40.834, 48.674]<br>Predicted Outcome: 45.36 [38.735, 51.985]<br><br><em>Parameterization:</em><br>x1: 0.15625<br>x2: 10.78125',
'<b>Arm 0_5</b><br><br>Actual Outcome: 6.955 [3.035, 10.875]<br>Predicted Outcome: 8.152 [-1.688, 17.991]<br><br><em>Parameterization:</em><br>x1: 4.375<br>x2: 1.875',
],
hoverinfo: 'text',
error_x: {
type: 'data',
array: [
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
3.92,
],
color: 'rgba(128,177,211,0.4)',
},
error_y: {
type: 'data',
array: [
4.780154758169175,
7.36067899309994,
6.470569145197851,
14.938034212561863,
4.504540390333295,
5.806637069634283,
14.583075480051319,
9.373619429302671,
5.14578065839648,
12.138580717815296,
9.34783922589498,
5.048012164710921,
8.496839941662675,
15.147022315724154,
6.579342415929554,
27.257890955525635,
4.907798201066071,
5.9692582174096,
6.505200491513234,
6.34575404817052,
22.40389387093856,
7.850904809044198,
7.47790641799058,
6.292585617481667,
16.06786726674987,
16.849385150184524,
8.21129208159199,
6.087207954131656,
5.286113613833347,
6.469429186854726,
4.4903418553834324,
3.919856431501263,
5.021506732891852,
11.394420365794543,
4.126361974255955,
4.9195460093997125,
6.373711099776367,
5.888335915658178,
6.625279548450101,
9.839597864218801,
],
color: 'rgba(128,177,211,0.4)',
},
visible: true,
showlegend: true,
},
],
layout: {
annotations: [
{
showarrow: false,
text: 'Show CI',
x: 1.125,
xanchor: 'left',
xref: 'paper',
y: 0.9,
yanchor: 'middle',
yref: 'paper',
},
],
xaxis: {
title: 'Actual Outcome',
zeroline: false,
mirror: true,
linecolor: 'black',
linewidth: 0.5,
},
yaxis: {
title: 'Predicted Outcome',
zeroline: false,
mirror: true,
linecolor: 'black',
linewidth: 0.5,
},
showlegend: false,
hovermode: 'closest',
updatemenus: [
{
x: 0,
y: 1.125,
yanchor: 'top',
xanchor: 'left',
buttons: [
{
args: ['visible', [true, true]],
label: 'metric_a',
method: 'restyle',
},
],
},
{
buttons: [
{
args: [
{
'error_x.width': 4,
'error_x.thickness': 2,
'error_y.width': 4,
'error_y.thickness': 2,
},
],
label: 'Yes',
method: 'restyle',
},
{
args: [
{
'error_x.width': 0,
'error_x.thickness': 0,
'error_y.width': 0,
'error_y.thickness': 0,
},
],
label: 'No',
method: 'restyle',
},
],
x: 1.125,
xanchor: 'left',
y: 0.8,
yanchor: 'middle',
},
],
width: 530,
height: 500,
},
};
return {
layout: data['layout'],
traces: data['data'],
};
}

const cvPlotData = getPlotData();

console.log(cvPlotData);

Plotly.newPlot('cv', cvPlotData['traces'], cvPlotData['layout'], {
responsive: true,
showLink: false,
});
Binary file added docs/assets/example_shrinkage.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 88182f4

Please sign in to comment.