forked from progmaticlab/skynet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_envoy_stats.py
executable file
·342 lines (310 loc) · 10.4 KB
/
parse_envoy_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import argparse
import copy
import csv
import os
import re
import sys
import time
from os.path import isfile, join
from Carbon.Aliases import false
from audioop import avg
from tabulate import tabulate
from matplotlib.font_manager import path
STATS_PERCENTILE = 95
EQUAL_ROWS_THRESHOLD_PERCENTAGE = 5
pods = {}
refpods = {}
def exclude_row(key, value):
if not '9080' in key or 'version' in key:
return True
return False
class Matrix:
def __init__(self, pod_results, matrix = None):
if matrix:
self.matrix = matrix
else:
self.matrix = {}
self.top = {}
self.results = pod_results
def add_value(self, timestamp, key, value, empty, nature):
if not key in self.results:
self.results[key] = {'nature': nature, 'start': ''}
if not key in self.matrix:
self.matrix[key] = [key]
if value != empty:
if nature == 'counter':
old_value = self.results[key].get('counter')
if old_value:
self.results[key]['counter'] = float(value)
value = float(value) - old_value
else:
self.results[key]['counter'] = float(value)
self.results[key]['start'] = float(value)
value = 0
self.matrix[key].append(value)
else:
self.matrix[key].append('')
def normalize_matrix(self):
nmatrix = copy.deepcopy(self.matrix)
for row in nmatrix.keys():
if not self.results[row].get('filtered_out'):
vmin, vmax, vavg = self.calc_min_max_avg(row)
self.results[row]['min'] = vmin
self.results[row]['max'] = vmax
self.results[row]['avg'] = vavg
values = nmatrix[row]
for i in range(1, len(values)):
if values[i] != '' and vmax != 0:
values[i] = float(values[i]) / vmax
return Matrix(self.results, nmatrix)
def compare_rows(self, key1, key2):
values1 = self.matrix[key1]
values2 = self.matrix[key2]
vmax = 0
for i in range(1, len(values1)):
if values2[i] == '' or values1[i] == '':
continue
diff = float(values2[i]) - float(values1[i])
if abs(diff) > vmax:
vmax = abs(diff)
return vmax
def weigh_num_changes(self, row):
num_changes = 0
values = self.matrix[row]
value = -1
for i in range(1, len(values)):
if values[i] == '':
continue
if value == -1:
value = values[i]
elif (values[i] != value):
num_changes += 1
return num_changes
def filter_out_changes(self, row):
weight = self.weigh_num_changes(row)
if weight == 0: # or weight > len(matrix[row]) - 2:
return 0
else:
return weight
def calc_min_max_avg(self, row, percentile = 100):
vsum = 0
values = sorted(self.matrix[row][1:], key=lambda x: float(x) if x != '' else -1)
count = 0
delta = 0
# Skip initial empty '' values and determine count and delta to account
# for percentile and drop values from beginning and at the end
for i in range(0, len(values)):
if values[i] == '':
continue
if count == 0:
count = len(values) - i + 1
delta = count * (100 - percentile) / 100 / 2
count = count - delta * 2
start = i + delta
break
if count == 0:
return 0, 0, 0
for i in range(start, start + count - 1):
value = float(values[i])
vsum += value
vavg = float(vsum) / count
return float(values[start]), float(values[start + count - 2]), vavg
def weigh_dispersion(self, row):
vmin, vmax, vavg = self.calc_min_max_avg(row)
if vmax == 0:
return 0
return int(float(vmax - vmin) * 100 / 2 / vmax )
def weigh_max_peaks(self, row):
vmin, vmax, vavg = self.calc_min_max_avg(row)
if vmax == 0:
return 0
disp = abs(float(vmax + vmin) / 2 - vavg + float(vmax - vmin) / 2) * 100 / vmax
if disp == 0:
return 0
return int(disp)
def criterion_dispersion(self, row):
if self.filter_out(row):
return 0
return self.weigh_dispersion(row)
def criterion_max_peaks(self, row):
if self.filter_out(row):
return 0
return self.weigh_max_peaks(row)
def criterion_num_changes(self, row):
return self.filter_out_changes(row)
def filter_out(self, row):
if self.filter_out_changes(row) == 0:
self.results[row]['filtered_out'] = True
return True
return False
def compute_results(self, num_rows, criteria):
for i in range(0, num_rows):
for criterion in criteria:
if not criterion.__name__ in self.top:
self.top[criterion.__name__] = []
self.top[criterion.__name__].append(('dummy', -1))
for row in self.matrix:
for criterion in criteria:
weight = criterion(self, row)
cname = criterion.__name__
self.results[row][cname] = weight
for i in range(0, num_rows):
if weight > self.top[cname][i][1]:
self.top[cname].insert(i, (row, weight))
del self.top[cname][-1]
break
class Pod:
def __init__(self, name, path):
self.name = name
self.path = path
self.stats = {}
self.results = {}
self.matrix = Matrix(self.results)
self.nmatrix = Matrix(self.results)
def display_all(self, data, csv_name = ''):
table = []
matrix = data.matrix
for row in matrix.keys():
if not self.results[row].get('filtered_out'):
table.append([
self.results[row]['nature'],
self.results[row]['start'],
self.results[row]['evenness'],
self.results[row]['equals_count'],
self.results[row][Matrix.criterion_num_changes.__name__],
self.results[row][Matrix.criterion_dispersion.__name__],
self.results[row][Matrix.criterion_max_peaks.__name__],
] + matrix[row])
titles = ['nature', 'start_value', 'evenness', 'equals', 'changes', 'dispersion', 'peaks', 'name'] + sorted(self.stats.iterkeys())
print tabulate(table, headers=titles, tablefmt="orgtbl")
if csv_name != '':
self.write_csv(csv_name, titles, table)
def write_csv(self, csv_name, titles, table):
with open(csv_name, 'w') as csvfile:
print "Writing csv file:", csvfile.name
writer = csv.writer(csvfile)
writer.writerow(titles)
writer.writerows(table)
def read_envoy_data(self, fname):
with open(join(self.path, fname), 'r') as f:
fcontents = f.read()
contents = fcontents.splitlines()
timestamp = fname.split('.')[1]
if not timestamp in self.stats:
self.stats[timestamp] = {}
for row in contents:
row_split = row.split(':')
try:
key = row_split[0]
value = row_split[1]
except:
print(fname, row)
if exclude_row(key, value):
continue
if 'P0(' in value:
histogram = value.split()
for hval in histogram:
hval_split = re.split('[(,)]', hval)
if hval_split[0] in ['P0', 'P50', 'P100']:
hkey = key + '|' + hval_split[0]
self.stats[timestamp][hkey] = hval_split[1]
self.matrix.add_value(timestamp, hkey, hval_split[1], 'nan', 'histo')
else:
self.stats[timestamp][key] = value
if key.endswith('active') or key.endswith('buffered'):
nature = 'gauge'
else:
nature = 'counter'
self.matrix.add_value(timestamp, key, value, ' No recorded values', nature)
def analyze_row(self, row_key):
nmin, nmax, navg = self.nmatrix.calc_min_max_avg(row_key, STATS_PERCENTILE)
self.results[row_key]['pmin'] = nmin
self.results[row_key]['pmax'] = nmax
self.results[row_key]['pavg'] = navg
if self.results[row_key]['max'] == 0:
self.results[row_key]['evenness'] = 0
else:
self.results[row_key]['evenness'] = int((nmax - nmin) / (self.results[row_key]['max']) * 100)
def init_results(self):
for row in self.matrix.matrix:
if not self.results[row].get('filtered_out'):
self.results[row]['equals'] = []
self.results[row]['equals_count'] = 0
def analyze_results(self):
nkeys = self.nmatrix.matrix.keys()
nkeys_len = len(nkeys)
for i in range(0, nkeys_len):
key = nkeys[i]
self.analyze_row(key)
if self.results[key].get('filtered_out'):
continue
for k in range(i + 1, nkeys_len):
if self.results[nkeys[k]].get('filtered_out'):
continue
diff_max = self.nmatrix.compare_rows(nkeys[i], nkeys[k])
if diff_max <= self.results[key]['pmax'] / 100 * EQUAL_ROWS_THRESHOLD_PERCENTAGE:
self.results[key]['equals'].append(nkeys[k])
self.results[nkeys[k]]['equals'].append(key)
self.results[key]['equals_count'] = len(self.results[key]['equals'])
self.results[nkeys[k]]['filtered_out'] = True
def process_pod(self):
# print "Handling files for pod:", self.name
files = os.listdir(self.path)
files.sort()
for f in files:
if isfile(join(self.path, f)) and f.startswith(self.name):
# print f
self.read_envoy_data(f)
#transform_prometheus_matrix()
self.init_results()
self.nmatrix = self.matrix.normalize_matrix()
self.matrix.compute_results(len(self.matrix.matrix), [Matrix.criterion_dispersion, Matrix.criterion_max_peaks, Matrix.criterion_num_changes])
self.analyze_results()
# print 'Total rows', len(self.matrix.matrix)
# print ''
# print 'All data:'
csv_name = join(self.path, 'csv-' + self.name + '.csv')
#self.display_all(self.matrix, csv_name)
csv_name = join(self.path, 'csv-norm-' + self.name + '.csv')
#self.display_all(self.nmatrix, csv_name )
#print 'Max peaks:'
#csv_name = join(self.path, 'csv-' + self.name + '-max_peaks.csv')
#display_top('max_peaks', csv_name)
#print ''
#csv_name = join(self.path, 'csv-' + self.name + '-dispersion.csv')
#print 'Dispersion:'
#display_top('dispersion', csv_name)
#print ''
#csv_name = join(self.path, 'csv-' + self.name + '-changes.csv')
#print 'Num changes:'
#display_top('num_changes', csv_name)
def main():
global stats, matrices, results, top
parser = argparse.ArgumentParser()
parser.add_argument('path', help='metrics dir')
parser.add_argument('-r', '--refpath', help='reference model metrics dir')
parser.add_argument('-p', '--pods', help='list of pods', nargs='+')
args = parser.parse_args()
print "Processing pods"
if args.refpath:
# print "Parsing reference model"
for pod_name in args.pods:
pod = Pod(pod_name, args.refpath)
pod.process_pod()
refpods[pod_name] = pod
print "Parsing metrics"
for pod_name in args.pods:
pod = Pod(pod_name, args.path)
pod.process_pod()
pods[pod_name] = pod
print "Looking for anomalies"
for pod_name in pods.keys():
results = pods[pod_name].results
refresults = refpods[pod_name].results
for row in results.keys():
if not results[row].get('filtered_out') and results[row]['evenness'] > refresults[row]['evenness']:
print "Pod:", pod_name,'Evenness:', results[row]['evenness'], '>', refresults[row]['evenness'], "Row:", row
if not results[row].get('filtered_out') and results[row]['equals_count'] < refresults[row]['equals_count']:
print "Pod:", pod_name, 'Equals:', results[row]['equals_count'], '<', refresults[row]['equals_count'], "Row:", row
print "Done"
main()