A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
- Python 2.7 or 3.5
- Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter
or
$ conda config --add channels conda-forge
$ conda install cookiecutter
cookiecutter https://github.com/CityOfLosAngeles/cookiecutter-data-science
The directory structure of your new project looks like this:
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data <- A directory for local data.
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
│
├── conda-requirements.txt <- The requirements file for conda installs.
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ ├── features <- Scripts to turn raw data into features for modeling
│ ├── models <- Scripts to train models and then use trained models to make
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
We welcome contributions! See the docs for guidelines.
pip install -r requirements.txt
py.test tests