-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCheck_likelihood.py
39 lines (30 loc) · 1.01 KB
/
Check_likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
file1 = "q_minimal.csv"
file2 = "p_minimal.csv"
data1_min = pd.read_csv(file1).iloc[:, 1:4]
data2_min = pd.read_csv(file2).iloc[:, 1:4]
results = []
for i, row1 in data1_min.iterrows():
row_results = []
for j, row2 in data2_min.iterrows():
scalar_product = np.dot(row1.values, row2.values)
row_results.append(scalar_product)
results.append(row_results)
results_array = np.array(results)
print("Skalarprodukte:")
print(results_array)
file1 = "q_initial.csv"
file2 = "p_initial.csv"
data1 = pd.read_csv(file1).iloc[:, 1:4]
data2 = pd.read_csv(file2).iloc[:, 1:4]
results_initial = []
for i, row1 in data1.iterrows():
row_results = []
for j, row2 in data2.iterrows():
scalar_product = np.dot(row1.values, row2.values)
row_results.append(scalar_product)
results_initial.append(row_results)
results_array = np.array(results_initial)
print("Skalarprodukte:")
print(results_array)