Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Auto turn on load shed #53

Merged
merged 4 commits into from
Jun 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 6 additions & 10 deletions pyreisejl/utility/extract_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def extract_data(scenario_info):
solve_time = []
optimize_time = []

extraction_vars = ['pf', 'pg', 'lmp', 'congu', 'congl']
extraction_vars = {'pf', 'pg', 'lmp', 'congu', 'congl'}
sparse_extraction_vars = {'congu', 'congl', 'load_shed'}
temps = {}
outputs = {}
Expand All @@ -106,7 +106,7 @@ def extract_data(scenario_info):
except KeyError:
pass

demand_scaling = output['mdo_save']['demand_scaling'][0]
demand_scaling = output['mdo_save']['demand_scaling'][0][0]
if demand_scaling < 1:
demand_change = round(100 * (1 - demand_scaling))
infeasibilities.append('%s:%s' % (str(i), str(demand_change)))
Expand All @@ -118,26 +118,22 @@ def extract_data(scenario_info):
temps['congl'] = output_mpc['branch']['MU_ST'].T
try:
temps['pf_dcline'] = output_mpc['dcline']['PF_dcline'].T
if i == 0:
extraction_vars.append('pf_dcline')
extraction_vars |= {'pf_dcline'}
except KeyError:
pass
try:
temps['storage_pg'] = output_mpc['storage']['PG'].T
temps['storage_e'] = output_mpc['storage']['Energy'].T
if i == 0:
extraction_vars.append('storage_pg')
extraction_vars.append('storage_e')
extraction_vars |= {'storage_pg', 'storage_e'}
except KeyError:
pass
try:
temps['load_shed'] = output_mpc['load_shed']['load_shed'].T
if i == 0:
extraction_vars.append('load_shed')
extraction_vars |= {'load_shed'}
except KeyError:
pass
for v in extraction_vars:
if i == 0:
if v not in outputs:
interval_length, n_columns = temps[v].shape
total_length = end_index * interval_length
outputs[v] = pd.DataFrame(np.zeros((total_length, n_columns)))
Expand Down
61 changes: 38 additions & 23 deletions src/loop.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,11 @@ function interval_loop(env::Gurobi.Env, model_kwargs::Dict,
n_interval::Int, start_index::Int,
inputfolder::String, outputfolder::String)
# Bad (but known) statuses to match against
bad_statuses = (
JuMP.MOI.INFEASIBLE, JuMP.MOI.INFEASIBLE_OR_UNBOUNDED,
JuMP.MOI.NUMERICAL_ERROR, JuMP.MOI.OTHER_LIMIT,
)
numeric_statuses = (
JuMP.MOI.INFEASIBLE_OR_UNBOUNDED, JuMP.MOI.NUMERICAL_ERROR,
JuMP.MOI.OTHER_LIMIT)
infeasible_statuses = (
JuMP.MOI.INFEASIBLE, JuMP.MOI.INFEASIBLE_OR_UNBOUNDED)
# Constant parameters
case = model_kwargs["case"]
storage = model_kwargs["storage"]
Expand All @@ -33,7 +34,8 @@ function interval_loop(env::Gurobi.Env, model_kwargs::Dict,
for i in 1:n_interval
# These must be declared global so that they persist through the loop.
global m, voi, pg0, storage_e0
model_kwargs["demand_scaling"] = 1.0
@show ("load_shed_enabled" in keys(model_kwargs))
@show ("BarHomogeneous" in keys(solver_kwargs))
interval_start = start_index + (i - 1) * interval
interval_end = interval_start + interval - 1
model_kwargs["start_index"] = interval_start
Expand Down Expand Up @@ -104,32 +106,46 @@ function interval_loop(env::Gurobi.Env, model_kwargs::Dict,
end
end

# The demand_scaling decrement _should_ only be triggered w/o load_shed
while true
global results
JuMP.optimize!(m)
status = JuMP.termination_status(m)
if status == JuMP.MOI.OPTIMAL
if status == JuMP.MOI.OPTIMAL
f = JuMP.objective_value(m)
results = get_results(f, voi, model_kwargs["case"])
break
elseif status in bad_statuses
model_kwargs["demand_scaling"] -= 0.05
if model_kwargs["demand_scaling"] < 0
error("Too many demand reductions, demand is at zero!")
end
println("Optimization failed, Reducing demand: "
* string(model_kwargs["demand_scaling"]))
bus_demand = _make_bus_demand(
case, interval_start, interval_end)
bus_demand *= model_kwargs["demand_scaling"]
for t in 1:interval, b in sets.load_bus_idx
JuMP.set_normalized_rhs(
voi.powerbalance[b, t], bus_demand[b, t])
end
elseif ((status in numeric_statuses)
& !("BarHomogeneous" in keys(solver_kwargs)))
# if BarHomogeneous is not enabled, enable it and re-build
solver_kwargs["BarHomogeneous"] = 1
println("enable BarHomogeneous")
JuMP.set_parameter(m, "BarHomogeneous", 1)
elseif ((status in infeasible_statuses)
& !("load_shed_enabled" in keys(model_kwargs)))
# if load shed not enabled, enable it and re-build the model
model_kwargs["load_shed_enabled"] = true
m_kwargs = (; (Symbol(k) => v for (k,v) in model_kwargs)...)
s_kwargs = (; (Symbol(k) => v for (k,v) in solver_kwargs)...)
println("rebuild with load shed")
m = JuMP.direct_model(Gurobi.Optimizer(env; s_kwargs...))
m, voi = _build_model(m; m_kwargs...)
elseif !("BarHomogeneous" in keys(solver_kwargs))
# if BarHomogeneous is not enabled, enable it and re-build
solver_kwargs["BarHomogeneous"] = 1
println("enable BarHomogeneous")
JuMP.set_parameter(m, "BarHomogeneous", 1)
elseif !("load_shed_enabled" in keys(model_kwargs))
model_kwargs["load_shed_enabled"] = true
m_kwargs = (; (Symbol(k) => v for (k,v) in model_kwargs)...)
s_kwargs = (; (Symbol(k) => v for (k,v) in solver_kwargs)...)
println("rebuild with load shed")
m = JuMP.direct_model(Gurobi.Optimizer(env; s_kwargs...))
m, voi = _build_model(m; m_kwargs...)
else
# Something has gone very wrong
@show status
@show keys(model_kwargs)
@show keys(solver_kwargs)
@show JuMP.objective_value(m)
if (("load_shed_enabled" in keys(model_kwargs))
&& (model_kwargs["load_shed_enabled"] == true))
Expand All @@ -155,7 +171,6 @@ function interval_loop(env::Gurobi.Env, model_kwargs::Dict,
# Save results
results_filename = "result_" * string(i-1) * ".mat"
results_filepath = joinpath(outputfolder, results_filename)
save_results(results, results_filepath;
demand_scaling=model_kwargs["demand_scaling"])
save_results(results, results_filepath)
end
end