-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #89 from BerkeleyLab/learn-icar-sat-mr-func
Add examples: Train to learn math operations and a function from a cloud microphysics model
- Loading branch information
Showing
6 changed files
with
899 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
! Copyright (c), The Regents of the University of California | ||
! Terms of use are as specified in LICENSE.txt | ||
module add_inputs | ||
!! Define a function that produces the desired network output for a given network input | ||
use inference_engine_m, only : tensor_t | ||
use assert_m, only : assert | ||
implicit none | ||
|
||
contains | ||
elemental function y(x_tensor) result(a_tensor) | ||
type(tensor_t), intent(in) :: x_tensor | ||
type(tensor_t) a_tensor | ||
associate(x => x_tensor%values()) | ||
call assert(ubound(x,1)>=7 .and. lbound(x,1)<=2,"y(x) :: sufficient input") | ||
a_tensor = tensor_t([x(1)+x(2), x(2)+x(3), x(3)+x(4), x(4)+x(5), x(5)+x(6), x(6)+x(8)]) | ||
end associate | ||
end function | ||
|
||
end module | ||
|
||
program train_polynomials | ||
!! This trains a neural network to learn the following six polynomial functions of its eight inputs. | ||
use inference_engine_m, only : & | ||
inference_engine_t, trainable_engine_t, mini_batch_t, tensor_t, input_output_pair_t, shuffle, relu_t | ||
use sourcery_m, only : string_t, file_t, command_line_t, bin_t, csv | ||
use assert_m, only : assert, intrinsic_array_t | ||
use add_inputs, only : y | ||
implicit none | ||
|
||
type(string_t) intial_network_file, final_network_file | ||
type(command_line_t) command_line | ||
|
||
final_network_file = string_t(command_line%flag_value("--output-file")) | ||
|
||
if (len(final_network_file%string())==0) then | ||
error stop new_line('a') // new_line('a') // & | ||
'Usage: ./build/run-fpm.sh run --example train-polynomials -- --output-file "<file-name>"' | ||
end if | ||
|
||
block | ||
integer, parameter :: num_pairs = 10, num_epochs = 200000, num_mini_batches= 2 ! num_pairs = # input/output pairs in training data | ||
|
||
type(mini_batch_t), allocatable :: mini_batches(:) | ||
type(input_output_pair_t), allocatable :: input_output_pairs(:) | ||
type(tensor_t), allocatable :: inputs(:), desired_outputs(:) | ||
type(trainable_engine_t) trainable_engine | ||
type(bin_t), allocatable :: bins(:) | ||
real, allocatable :: cost(:), random_numbers(:) | ||
|
||
call random_init(image_distinct=.true., repeatable=.true.) | ||
|
||
trainable_engine = perturbed_identity_network(perturbation_magnitude=0.05) | ||
call output(trainable_engine%to_inference_engine(), string_t("initial-network.json")) | ||
|
||
associate(num_inputs => trainable_engine%num_inputs(), num_outputs => trainable_engine%num_outputs()) | ||
|
||
block | ||
integer i, j | ||
integer, allocatable :: output_sizes(:) | ||
inputs = [(tensor_t(real([(j*i, j = 1,num_inputs)])/(num_inputs*num_pairs)), i = 1, num_pairs)] | ||
desired_outputs = y(inputs) | ||
output_sizes = [(size(desired_outputs(i)%values()),i=1,size(desired_outputs))] | ||
call assert(all([num_outputs==output_sizes]), "fit-polynomials: # outputs", intrinsic_array_t([num_outputs,output_sizes])) | ||
end block | ||
input_output_pairs = input_output_pair_t(inputs, desired_outputs) | ||
block | ||
integer b | ||
bins = [(bin_t(num_items=num_pairs, num_bins=num_mini_batches, bin_number=b), b = 1, num_mini_batches)] | ||
end block | ||
|
||
allocate(random_numbers(2:size(input_output_pairs))) | ||
|
||
print *,"Cost" | ||
block | ||
integer e, b | ||
do e = 1,num_epochs | ||
call random_number(random_numbers) | ||
call shuffle(input_output_pairs, random_numbers) | ||
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))] | ||
call trainable_engine%train(mini_batches, cost, adam=.true.) | ||
print *,sum(cost)/size(cost) | ||
end do | ||
end block | ||
|
||
block | ||
real, parameter :: tolerance = 1.E-06 | ||
integer p | ||
|
||
associate(network_outputs => trainable_engine%infer(inputs)) | ||
print "(a,69x,a)"," Outputs", "| Desired outputs" | ||
do p = 1, num_pairs | ||
print "(6G13.5, a1, 6G13.5)",network_outputs(p)%values(), "|", desired_outputs(p)%values() | ||
end do | ||
end associate | ||
end block | ||
|
||
end associate | ||
|
||
call output(trainable_engine%to_inference_engine(), final_network_file) | ||
|
||
end block | ||
|
||
contains | ||
|
||
subroutine output(inference_engine, file_name) | ||
type(inference_engine_t), intent(in) :: inference_engine | ||
type(string_t), intent(in) :: file_name | ||
type(file_t) json_file | ||
json_file = inference_engine%to_json() | ||
call json_file%write_lines(file_name) | ||
end subroutine | ||
|
||
pure function e(j,n) result(unit_vector) | ||
integer, intent(in) :: j, n | ||
integer k | ||
real, allocatable :: unit_vector(:) | ||
unit_vector = real([(merge(1,0,j==k),k=1,n)]) | ||
end function | ||
|
||
function perturbed_identity_network(perturbation_magnitude) result(trainable_engine) | ||
type(trainable_engine_t) trainable_engine | ||
real, intent(in) :: perturbation_magnitude | ||
integer, parameter :: n(*) = [8, 64, 64, 64, 6] | ||
integer, parameter :: n_max = maxval(n), layers = size(n) | ||
integer j, k, l | ||
real, allocatable :: identity(:,:,:), w_harvest(:,:,:), b_harvest(:,:) | ||
|
||
identity = reshape( [( [(e(k,n_max), k=1,n_max)], l = 1, layers-1 )], [n_max, n_max, layers-1]) | ||
|
||
allocate(w_harvest, mold = identity) | ||
allocate(b_harvest(size(identity,1), size(identity,3))) | ||
|
||
call random_number(w_harvest) | ||
call random_number(b_harvest) | ||
|
||
associate(w => identity + perturbation_magnitude*(w_harvest-0.5)/0.5, b => perturbation_magnitude*(b_harvest-0.5)/0.5) | ||
|
||
trainable_engine = trainable_engine_t( & | ||
nodes = n, weights = w, biases = b, differentiable_activation_strategy = relu_t(), & | ||
metadata = & | ||
[string_t("Perturbed Identity"), string_t("Damian Rouson"), string_t("2023-09-23"), string_t("relu"), string_t("false")] & | ||
) | ||
|
||
end associate | ||
end function | ||
|
||
end program |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
! Copyright (c), The Regents of the University of California | ||
! Terms of use are as specified in LICENSE.txt | ||
module raise_inputs_to_a_power | ||
!! Define a function that produces the desired network output for a given network input | ||
use inference_engine_m, only : tensor_t | ||
use assert_m, only : assert | ||
implicit none | ||
|
||
contains | ||
elemental function y(x_tensor) result(a_tensor) | ||
type(tensor_t), intent(in) :: x_tensor | ||
type(tensor_t) a_tensor | ||
associate(x => x_tensor%values()) | ||
call assert(ubound(x,1)>=7 .and. lbound(x,1)<=2,"y(x) :: sufficient input") | ||
a_tensor = tensor_t([x(1)**2, x(2)**3, x(3)**4, x(4)**4, x(5)**3, x(6)**2]) | ||
end associate | ||
end function | ||
|
||
end module | ||
|
||
program train_polynomials | ||
!! This trains a neural network to learn the following six polynomial functions of its eight inputs. | ||
use inference_engine_m, only : & | ||
inference_engine_t, trainable_engine_t, mini_batch_t, tensor_t, input_output_pair_t, shuffle, relu_t | ||
use sourcery_m, only : string_t, file_t, command_line_t, bin_t, csv | ||
use assert_m, only : assert, intrinsic_array_t | ||
use raise_inputs_to_a_power, only : y | ||
implicit none | ||
|
||
type(string_t) intial_network_file, final_network_file | ||
type(command_line_t) command_line | ||
|
||
final_network_file = string_t(command_line%flag_value("--output-file")) | ||
|
||
if (len(final_network_file%string())==0) then | ||
error stop new_line('a') // new_line('a') // & | ||
'Usage: ./build/run-fpm.sh run --example train-polynomials -- --output-file "<file-name>"' | ||
end if | ||
|
||
block | ||
integer, parameter :: num_pairs = 10, num_epochs = 200000, num_mini_batches= 2 ! num_pairs = # input/output pairs in training data | ||
|
||
type(mini_batch_t), allocatable :: mini_batches(:) | ||
type(input_output_pair_t), allocatable :: input_output_pairs(:) | ||
type(tensor_t), allocatable :: inputs(:), desired_outputs(:) | ||
type(trainable_engine_t) trainable_engine | ||
type(bin_t), allocatable :: bins(:) | ||
real, allocatable :: cost(:), random_numbers(:) | ||
|
||
call random_init(image_distinct=.true., repeatable=.true.) | ||
|
||
trainable_engine = perturbed_identity_network(perturbation_magnitude=0.05) | ||
call output(trainable_engine%to_inference_engine(), string_t("initial-network.json")) | ||
|
||
associate(num_inputs => trainable_engine%num_inputs(), num_outputs => trainable_engine%num_outputs()) | ||
|
||
block | ||
integer i, j | ||
integer, allocatable :: output_sizes(:) | ||
inputs = [(tensor_t(real([(j*i, j = 1,num_inputs)])/(num_inputs*num_pairs)), i = 1, num_pairs)] | ||
desired_outputs = y(inputs) | ||
output_sizes = [(size(desired_outputs(i)%values()),i=1,size(desired_outputs))] | ||
call assert(all([num_outputs==output_sizes]), "fit-polynomials: # outputs", intrinsic_array_t([num_outputs,output_sizes])) | ||
end block | ||
input_output_pairs = input_output_pair_t(inputs, desired_outputs) | ||
block | ||
integer b | ||
bins = [(bin_t(num_items=num_pairs, num_bins=num_mini_batches, bin_number=b), b = 1, num_mini_batches)] | ||
end block | ||
|
||
allocate(random_numbers(2:size(input_output_pairs))) | ||
|
||
print *,"Cost" | ||
block | ||
integer e, b | ||
do e = 1,num_epochs | ||
call random_number(random_numbers) | ||
call shuffle(input_output_pairs, random_numbers) | ||
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))] | ||
call trainable_engine%train(mini_batches, cost, adam=.true.) | ||
print *,sum(cost)/size(cost) | ||
end do | ||
end block | ||
|
||
block | ||
real, parameter :: tolerance = 1.E-06 | ||
integer p | ||
|
||
associate(network_outputs => trainable_engine%infer(inputs)) | ||
print "(a,69x,a)"," Outputs", "| Desired outputs" | ||
do p = 1, num_pairs | ||
print "(6G13.5, a1, 6G13.5)",network_outputs(p)%values(), "|", desired_outputs(p)%values() | ||
end do | ||
end associate | ||
end block | ||
|
||
end associate | ||
|
||
call output(trainable_engine%to_inference_engine(), final_network_file) | ||
|
||
end block | ||
|
||
contains | ||
|
||
subroutine output(inference_engine, file_name) | ||
type(inference_engine_t), intent(in) :: inference_engine | ||
type(string_t), intent(in) :: file_name | ||
type(file_t) json_file | ||
json_file = inference_engine%to_json() | ||
call json_file%write_lines(file_name) | ||
end subroutine | ||
|
||
pure function e(j,n) result(unit_vector) | ||
integer, intent(in) :: j, n | ||
integer k | ||
real, allocatable :: unit_vector(:) | ||
unit_vector = real([(merge(1,0,j==k),k=1,n)]) | ||
end function | ||
|
||
function perturbed_identity_network(perturbation_magnitude) result(trainable_engine) | ||
type(trainable_engine_t) trainable_engine | ||
real, intent(in) :: perturbation_magnitude | ||
integer, parameter :: n(*) = [8, 64, 64, 64, 6] | ||
integer, parameter :: n_max = maxval(n), layers = size(n) | ||
integer j, k, l | ||
real, allocatable :: identity(:,:,:), w_harvest(:,:,:), b_harvest(:,:) | ||
|
||
identity = reshape( [( [(e(k,n_max), k=1,n_max)], l = 1, layers-1 )], [n_max, n_max, layers-1]) | ||
|
||
allocate(w_harvest, mold = identity) | ||
allocate(b_harvest(size(identity,1), size(identity,3))) | ||
|
||
call random_number(w_harvest) | ||
call random_number(b_harvest) | ||
|
||
associate(w => identity + perturbation_magnitude*(w_harvest-0.5)/0.5, b => perturbation_magnitude*(b_harvest-0.5)/0.5) | ||
|
||
trainable_engine = trainable_engine_t( & | ||
nodes = n, weights = w, biases = b, differentiable_activation_strategy = relu_t(), & | ||
metadata = & | ||
[string_t("Perturbed Identity"), string_t("Damian Rouson"), string_t("2023-09-23"), string_t("relu"), string_t("false")] & | ||
) | ||
|
||
end associate | ||
end function | ||
|
||
end program |
Oops, something went wrong.