-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add LSTMLayer and LSTMUnitLayer, with tests
- Loading branch information
1 parent
ee44d95
commit c38f9ac
Showing
5 changed files
with
901 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
#include <string> | ||
#include <vector> | ||
|
||
#include "caffe/blob.hpp" | ||
#include "caffe/common.hpp" | ||
#include "caffe/filler.hpp" | ||
#include "caffe/layer.hpp" | ||
#include "caffe/sequence_layers.hpp" | ||
#include "caffe/util/math_functions.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
void LSTMLayer<Dtype>::RecurrentInputBlobNames(vector<string>* names) const { | ||
names->resize(2); | ||
(*names)[0] = "h_0"; | ||
(*names)[1] = "c_0"; | ||
} | ||
|
||
template <typename Dtype> | ||
void LSTMLayer<Dtype>::RecurrentOutputBlobNames(vector<string>* names) const { | ||
names->resize(2); | ||
(*names)[0] = "h_" + this->int_to_str(this->T_); | ||
(*names)[1] = "c_T"; | ||
} | ||
|
||
template <typename Dtype> | ||
void LSTMLayer<Dtype>::OutputBlobNames(vector<string>* names) const { | ||
names->resize(1); | ||
(*names)[0] = "h"; | ||
} | ||
|
||
template <typename Dtype> | ||
void LSTMLayer<Dtype>::FillUnrolledNet(NetParameter* net_param) const { | ||
const int num_output = this->layer_param_.recurrent_param().num_output(); | ||
CHECK_GT(num_output, 0) << "num_output must be positive"; | ||
const FillerParameter& weight_filler = | ||
this->layer_param_.recurrent_param().weight_filler(); | ||
const FillerParameter& bias_filler = | ||
this->layer_param_.recurrent_param().bias_filler(); | ||
|
||
// Add generic LayerParameter's (without bottoms/tops) of layer types we'll | ||
// use to save redundant code. | ||
LayerParameter hidden_param; | ||
hidden_param.set_type("InnerProduct"); | ||
hidden_param.mutable_inner_product_param()->set_num_output(num_output * 4); | ||
hidden_param.mutable_inner_product_param()->set_bias_term(false); | ||
hidden_param.mutable_inner_product_param()->set_axis(2); | ||
hidden_param.mutable_inner_product_param()-> | ||
mutable_weight_filler()->CopyFrom(weight_filler); | ||
|
||
LayerParameter biased_hidden_param(hidden_param); | ||
biased_hidden_param.mutable_inner_product_param()->set_bias_term(true); | ||
biased_hidden_param.mutable_inner_product_param()-> | ||
mutable_bias_filler()->CopyFrom(bias_filler); | ||
|
||
LayerParameter sum_param; | ||
sum_param.set_type("Eltwise"); | ||
sum_param.mutable_eltwise_param()->set_operation( | ||
EltwiseParameter_EltwiseOp_SUM); | ||
|
||
LayerParameter slice_param; | ||
slice_param.set_type("Slice"); | ||
slice_param.mutable_slice_param()->set_axis(0); | ||
|
||
LayerParameter split_param; | ||
split_param.set_type("Split"); | ||
|
||
BlobShape input_shape; | ||
input_shape.add_dim(1); // c_0 and h_0 are a single timestep | ||
input_shape.add_dim(this->N_); | ||
input_shape.add_dim(num_output); | ||
|
||
net_param->add_input("c_0"); | ||
net_param->add_input_shape()->CopyFrom(input_shape); | ||
|
||
net_param->add_input("h_0"); | ||
net_param->add_input_shape()->CopyFrom(input_shape); | ||
|
||
LayerParameter* cont_slice_param = net_param->add_layer(); | ||
cont_slice_param->CopyFrom(slice_param); | ||
cont_slice_param->set_name("cont_slice"); | ||
cont_slice_param->add_bottom("cont"); | ||
cont_slice_param->mutable_slice_param()->set_axis(1); | ||
|
||
// Add layer to transform all timesteps of x to the hidden state dimension. | ||
// W_xc_x = W_xc * x + b_c | ||
{ | ||
LayerParameter* x_transform_param = net_param->add_layer(); | ||
x_transform_param->CopyFrom(biased_hidden_param); | ||
x_transform_param->set_name("x_transform"); | ||
x_transform_param->add_param()->set_name("W_xc"); | ||
x_transform_param->add_param()->set_name("b_c"); | ||
x_transform_param->add_bottom("x"); | ||
x_transform_param->add_top("W_xc_x"); | ||
} | ||
|
||
if (this->static_input_) { | ||
// Add layer to transform x_static to the gate dimension. | ||
// W_xc_x_static = W_xc_static * x_static | ||
LayerParameter* x_static_transform_param = net_param->add_layer(); | ||
x_static_transform_param->CopyFrom(hidden_param); | ||
x_static_transform_param->mutable_inner_product_param()->set_axis(1); | ||
x_static_transform_param->set_name("W_xc_x_static"); | ||
x_static_transform_param->add_param()->set_name("W_xc_static"); | ||
x_static_transform_param->add_bottom("x_static"); | ||
x_static_transform_param->add_top("W_xc_x_static"); | ||
|
||
LayerParameter* reshape_param = net_param->add_layer(); | ||
reshape_param->set_type("Reshape"); | ||
BlobShape* new_shape = | ||
reshape_param->mutable_reshape_param()->mutable_shape(); | ||
new_shape->add_dim(1); // One timestep. | ||
new_shape->add_dim(this->N_); | ||
new_shape->add_dim( | ||
x_static_transform_param->inner_product_param().num_output()); | ||
reshape_param->add_bottom("W_xc_x_static"); | ||
reshape_param->add_top("W_xc_x_static"); | ||
} | ||
|
||
LayerParameter* x_slice_param = net_param->add_layer(); | ||
x_slice_param->CopyFrom(slice_param); | ||
x_slice_param->add_bottom("W_xc_x"); | ||
x_slice_param->set_name("W_xc_x_slice"); | ||
|
||
LayerParameter output_concat_layer; | ||
output_concat_layer.set_name("h_concat"); | ||
output_concat_layer.set_type("Concat"); | ||
output_concat_layer.add_top("h"); | ||
output_concat_layer.mutable_concat_param()->set_axis(0); | ||
|
||
for (int t = 1; t <= this->T_; ++t) { | ||
string tm1s = this->int_to_str(t - 1); | ||
string ts = this->int_to_str(t); | ||
|
||
cont_slice_param->add_top("cont_" + ts); | ||
x_slice_param->add_top("W_xc_x_" + ts); | ||
|
||
// Add layers to flush the hidden state when beginning a new | ||
// sequence, as indicated by cont_t. | ||
// h_conted_{t-1} := cont_t * h_{t-1} | ||
// | ||
// Normally, cont_t is binary (i.e., 0 or 1), so: | ||
// h_conted_{t-1} := h_{t-1} if cont_t == 1 | ||
// 0 otherwise | ||
{ | ||
LayerParameter* cont_h_param = net_param->add_layer(); | ||
cont_h_param->CopyFrom(sum_param); | ||
cont_h_param->mutable_eltwise_param()->set_coeff_blob(true); | ||
cont_h_param->set_name("h_conted_" + tm1s); | ||
cont_h_param->add_bottom("h_" + tm1s); | ||
cont_h_param->add_bottom("cont_" + ts); | ||
cont_h_param->add_top("h_conted_" + tm1s); | ||
} | ||
|
||
// Add layer to compute | ||
// W_hc_h_{t-1} := W_hc * h_conted_{t-1} | ||
{ | ||
LayerParameter* w_param = net_param->add_layer(); | ||
w_param->CopyFrom(hidden_param); | ||
w_param->set_name("transform_" + ts); | ||
w_param->add_param()->set_name("W_hc"); | ||
w_param->add_bottom("h_conted_" + tm1s); | ||
w_param->add_top("W_hc_h_" + tm1s); | ||
w_param->mutable_inner_product_param()->set_axis(2); | ||
} | ||
|
||
// Add the outputs of the linear transformations to compute the gate input. | ||
// gate_input_t := W_hc * h_conted_{t-1} + W_xc * x_t + b_c | ||
// = W_hc_h_{t-1} + W_xc_x_t + b_c | ||
{ | ||
LayerParameter* input_sum_layer = net_param->add_layer(); | ||
input_sum_layer->CopyFrom(sum_param); | ||
input_sum_layer->set_name("gate_input_" + ts); | ||
input_sum_layer->add_bottom("W_hc_h_" + tm1s); | ||
input_sum_layer->add_bottom("W_xc_x_" + ts); | ||
if (this->static_input_) { | ||
input_sum_layer->add_bottom("W_xc_x_static"); | ||
} | ||
input_sum_layer->add_top("gate_input_" + ts); | ||
} | ||
|
||
// Add LSTMUnit layer to compute the cell & hidden vectors c_t and h_t. | ||
// Inputs: c_{t-1}, gate_input_t = (i_t, f_t, o_t, g_t), cont_t | ||
// Outputs: c_t, h_t | ||
// [ i_t' ] | ||
// [ f_t' ] := gate_input_t | ||
// [ o_t' ] | ||
// [ g_t' ] | ||
// i_t := \sigmoid[i_t'] | ||
// f_t := \sigmoid[f_t'] | ||
// o_t := \sigmoid[o_t'] | ||
// g_t := \tanh[g_t'] | ||
// c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t) | ||
// h_t := o_t .* \tanh[c_t] | ||
{ | ||
LayerParameter* lstm_unit_param = net_param->add_layer(); | ||
lstm_unit_param->set_type("LSTMUnit"); | ||
lstm_unit_param->add_bottom("c_" + tm1s); | ||
lstm_unit_param->add_bottom("gate_input_" + ts); | ||
lstm_unit_param->add_bottom("cont_" + ts); | ||
lstm_unit_param->add_top("c_" + ts); | ||
lstm_unit_param->add_top("h_" + ts); | ||
lstm_unit_param->set_name("unit_" + ts); | ||
} | ||
output_concat_layer.add_bottom("h_" + ts); | ||
} // for (int t = 1; t <= this->T_; ++t) | ||
|
||
{ | ||
LayerParameter* c_T_copy_param = net_param->add_layer(); | ||
c_T_copy_param->CopyFrom(split_param); | ||
c_T_copy_param->add_bottom("c_" + this->int_to_str(this->T_)); | ||
c_T_copy_param->add_top("c_T"); | ||
} | ||
net_param->add_layer()->CopyFrom(output_concat_layer); | ||
} | ||
|
||
INSTANTIATE_CLASS(LSTMLayer); | ||
REGISTER_LAYER_CLASS(LSTM); | ||
|
||
} // namespace caffe |
Oops, something went wrong.