Skip to content

Commit

Permalink
Python Restart Test
Browse files Browse the repository at this point in the history
  • Loading branch information
ax3l committed Feb 8, 2025
1 parent 05b3e71 commit 5134da6
Show file tree
Hide file tree
Showing 6 changed files with 434 additions and 0 deletions.
12 changes: 12 additions & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -303,6 +303,18 @@ label_impactx_test(FODO_channel slow)
label_impactx_test(FODO_channel.py slow)


# FODO Channel Restart ########################################################
#
add_impactx_test(FODO_channel_restart.py
examples/fodo_channel_restart/run_fodo.py
OFF # ImpactX MPI-parallel
examples/fodo_channel_restart/analysis_fodo.py
examples/fodo_channel_restart/plot_fodo.py
)
label_impactx_test(FODO_channel.py slow)
set_property(TEST FODO_channel_restart.py.run APPEND PROPERTY DEPENDS "FODO_channel.py.run")


# Chicane #####################################################################
#
add_impactx_test(chicane
Expand Down
65 changes: 65 additions & 0 deletions examples/fodo_channel_restart/README.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
.. _examples-fodo-channel-restart:

FODO Channel Restart
====================

This example takes the last output of the :ref:`FODO Channel <examples-fodo-channel>` example, loads the beam back into a new simulation and continues the simulation for another 100 FODO periods.

The second moments of the particle distribution after the FODO cell should coincide with the second moments of the particle distribution before the FODO cell, to within the level expected due to noise due to statistical sampling.

In this test, the initial and final values of :math:`\lambda_x`, :math:`\lambda_y`, :math:`\lambda_t`, :math:`\epsilon_x`, :math:`\epsilon_y`, and :math:`\epsilon_t` must agree with nominal values.
This test also demonstrates the ``period_sample_intervals`` capability of our beam monitor diagnostics, only creating output every 10th FODO cell


Run
---

This example can be run **either** as:

* **Python** script: ``python3 run_fodo.py`` or
* ImpactX **executable** using an input file: ``impactx input_fodo.in``

For `MPI-parallel <https://www.mpi-forum.org>`__ runs, prefix these lines with ``mpiexec -n 4 ...`` or ``srun -n 4 ...``, depending on the system.

.. tab-set::

.. tab-item:: Python: Script

.. literalinclude:: run_fodo.py
:language: python3
:caption: You can copy this file from ``examples/fodo/run_fodo.py``.

.. tab-item:: Executable: Input File

.. literalinclude:: input_fodo.in
:language: ini
:caption: You can copy this file from ``examples/fodo/input_fodo.in``.


Analyze
-------

We run the following script to analyze correctness:

.. dropdown:: Script ``analysis_fodo.py``

.. literalinclude:: analysis_fodo.py
:language: python3
:caption: You can copy this file from ``examples/fodo/analysis_fodo.py``.


Visualize
---------

You can run the following script to visualize the beam evolution over time:

.. dropdown:: Script ``plot_fodo.py``

.. literalinclude:: plot_fodo.py
:language: python3
:caption: You can copy this file from ``examples/fodo/plot_fodo.py``.

.. figure:: https://gist.githubusercontent.com/ax3l/8ae7dcb9e07c361e002fa56d6b16cb16/raw/cc952670bb946cd7a62282bc7aa3f03f3d5faa16/fodo_channel.png
:alt: preserved emittance in the FODO channel.

FODO transverse emittance evolution (preserved)
105 changes: 105 additions & 0 deletions examples/fodo_channel_restart/analysis_fodo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#


import numpy as np
import openpmd_api as io
from scipy.stats import moment


def get_moments(beam):
"""Calculate standard deviations of beam position & momenta
and emittance values
Returns
-------
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
"""
sigx = moment(beam["position_x"], moment=2) ** 0.5 # variance -> std dev.
sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
sigy = moment(beam["position_y"], moment=2) ** 0.5
sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
sigt = moment(beam["position_t"], moment=2) ** 0.5
sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

epstrms = beam.cov(ddof=0)
emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
final = series.iterations[last_step].particles["beam"].to_df()

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
assert num_particles == len(final)

# compare beamline length: 300m
assert np.isclose(
300.0, series.iterations[last_step].particles["beam"].get_attribute("z_ref")
)
# compare beam monitor outputs: 10 (every 10th FODO element + 1)
assert len(series.iterations) == 11

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(initial)
print(f" sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
f" emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0 # ignored
rtol = 2.2 * num_particles**-0.5 # from random sampling of a smooth distribution
print(f" rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
[sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
[
7.5451170454175073e-005,
7.5441588239210947e-005,
9.9775878164077539e-004,
1.9959540393751392e-009,
2.0175015289132990e-009,
2.0013820193294972e-006,
],
rtol=rtol,
atol=atol,
)


print("")
print("Final Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(final)
print(f" sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
f" emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0 # ignored
rtol = 2.2 * num_particles**-0.5 # from random sampling of a smooth distribution
print(f" rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
[sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
[
7.4790118496224206e-005,
7.5357525169680140e-005,
9.9775879288128088e-004,
1.9959539836392703e-009,
2.0175014668882125e-009,
2.0013820380883801e-006,
],
rtol=rtol,
atol=atol,
)
59 changes: 59 additions & 0 deletions examples/fodo_channel_restart/input_fodo.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
###############################################################################
# Reference Particle
###############################################################################
beam.kin_energy = 2.0e3
beam.particle = electron

# ignored
beam.charge = 1.0e-9
beam.units = static
beam.distribution = empty


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = source line
lattice.nslice = 5

source.type = source
source.distribution = openPMD
source.openpmd_path = "../FODO.channel/diags/openPMD/monitor.h5"

line.type = line
line.repeat = 101 # FODO channel of 101 periods
line.elements = monitor drift1 quad1 drift2 quad2 drift3

monitor.type = beam_monitor
monitor.period_sample_intervals = 10
monitor.backend = h5

drift1.type = drift
drift1.ds = 0.25

quad1.type = quad
quad1.ds = 1.0
quad1.k = 1.0

drift2.type = drift
drift2.ds = 0.5

quad2.type = quad
quad2.ds = 1.0
quad2.k = -1.0

drift3.type = drift
drift3.ds = 0.25


###############################################################################
# Algorithms
###############################################################################
algo.particle_shape = 2
algo.space_charge = false


###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = false
132 changes: 132 additions & 0 deletions examples/fodo_channel_restart/plot_fodo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#

import argparse
import glob
import re

import matplotlib.pyplot as plt
import openpmd_api as io
import pandas as pd
from matplotlib.ticker import MaxNLocator
from scipy.stats import moment


def get_moments(beam):
"""Calculate standard deviations of beam position & momenta
and emittance values
Returns
-------
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
"""
sigx = moment(beam["position_x"], moment=2) ** 0.5 # variance -> std dev.
sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
sigy = moment(beam["position_y"], moment=2) ** 0.5
sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
sigt = moment(beam["position_t"], moment=2) ** 0.5
sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

epstrms = beam.cov(ddof=0)
emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


def read_file(file_pattern):
for filename in glob.glob(file_pattern):
df = pd.read_csv(filename, delimiter=r"\s+")
if "step" not in df.columns:
step = int(re.findall(r"[0-9]+", filename)[0])
df["step"] = step
yield df


def read_time_series(file_pattern):
"""Read in all CSV files from each MPI rank (and potentially OpenMP
thread). Concatenate into one Pandas dataframe.
Returns
-------
pandas.DataFrame
"""
return pd.concat(
read_file(file_pattern),
axis=0,
ignore_index=True,
) # .set_index('id')


# options to run this script
parser = argparse.ArgumentParser(description="Plot the FODO benchmark.")
parser.add_argument(
"--save-png", action="store_true", help="non-interactive run: save to PNGs"
)
args = parser.parse_args()


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
final = series.iterations[last_step].particles["beam"].to_df()
ref_particle = read_time_series("diags/ref_particle.*")

# scaling to units
millimeter = 1.0e3 # m->mm
mrad = 1.0e3 # ImpactX uses "static units": momenta are normalized by the magnitude of the momentum of the reference particle p0: px/p0 (rad)
# mm_mrad = 1.e6
nm_rad = 1.0e9


# select a single particle by id
# particle_42 = beam[beam["id"] == 42]
# print(particle_42)


# steps & corresponding z
steps = list(series.iterations)

z = list(map(lambda step: ref_particle[ref_particle["step"] == step].z.values, steps))
# print(f"z={z}")


# beam transversal size & emittance over steps
moments = list(
map(
lambda step: (
step,
get_moments(series.iterations[step].particles["beam"].to_df()),
),
steps,
)
)
# print(moments)
emittance_x = list(map(lambda step_val: step_val[1][3] * nm_rad, moments))
emittance_y = list(map(lambda step_val: step_val[1][4] * nm_rad, moments))

# print(sigx, sigy)


# print beam transversal size over steps
f = plt.figure(figsize=(9, 4.8))
ax1 = f.gca()
im_emittance_x = ax1.plot(z, emittance_x, ".-", label=r"$\epsilon_x$")
im_emittance_y = ax1.plot(z, emittance_y, ".-", label=r"$\epsilon_y$")

ax1.legend()
ax1.set_xlabel(r"$z$ [m]")
ax1.set_ylabel(r"$\epsilon_{x,y}$ [nm]")
ax1.set_ylim([1.98, 2.03])
ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
plt.tight_layout()
if args.save_png:
plt.savefig("fodo_lambda.png")
else:
plt.show()
Loading

0 comments on commit 5134da6

Please sign in to comment.