Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update FastDEC after ACSet updates #95

Merged
merged 2 commits into from
Jun 4, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
177 changes: 80 additions & 97 deletions src/FastDEC.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
This module provides similar fuctionality to the DiscreteExteriorCalculus module
but uses assumptions about the ACSet mesh structure to greatly improve performance.
Some operators, like the exterior derivative are returned as sparse matrices while others,
like the wedge product, are instead returned as functions that will compute the product.
like the wedge product, are instead returned as functions that will compute the product.
"""
module FastDEC
using LinearAlgebra: Diagonal, dot, norm, cross
using StaticArrays: SVector
using StaticArrays: SVector, MVector
using SparseArrays: sparse, spzeros
using LinearAlgebra
using Base.Iterators
Expand All @@ -25,7 +25,7 @@ export dec_boundary, dec_differential, dec_dual_derivative, dec_hodge_star, dec_
dec_p_wedge_product(::Type{Tuple{0,1}}, sd::EmbeddedDeltaDualComplex1D)
Precomputes values for the wedge product between a 0 and 1-form.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
Expand All @@ -36,7 +36,7 @@ end
""" dec_p_wedge_product(::Type{Tuple{0,1}}, sd::EmbeddedDeltaDualComplex2D)
Precomputes values for the wedge product between a 0 and 1-form.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
Expand All @@ -49,7 +49,7 @@ end
""" dec_c_wedge_product!(::Type{Tuple{0,1}}, wedge_terms, f, α, val_pack)
Computes the wedge product between a 0 and 1-form.
Use the precomputational "p" varient for the wedge_terms parameter.
Use the precomputational "p" varient for the wedge_terms parameter.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
Expand All @@ -66,48 +66,35 @@ end
""" dec_p_wedge_product(::Type{Tuple{0,2}}, sd::EmbeddedDeltaDualComplex2D{Bool, float_type, _p} where _p) where float_type
Precomputes values for the wedge product between a 0 and 2-form.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
function dec_p_wedge_product(::Type{Tuple{0,2}}, sd::EmbeddedDeltaDualComplex2D{Bool, float_type, _p} where _p) where float_type

simples = triangles(sd)

dual_edges_1 = @view sd[:D_∂e1]
dual_v_0 = @view sd[:D_∂v0]

dual_edges_2 = @view sd[:D_∂e2]
dual_v_1 = @view sd[:D_∂v1]

dv = @view sd[:dual_area]
vols = @view sd[:area]

# XXX: This is assuming that meshes don't have too many entries
# TODO: This type should be settable by the user and default set to Int32
primal_vertices = Array{Int32}(undef, 6, ntriangles(sd))
coeffs = Array{float_type}(undef, 6, ntriangles(sd))

row_idx_in_col = ones(Int8, ntriangles(sd))
shift::Int = nv(sd) + ne(sd)
shift::Int = ntriangles(sd)

@inbounds for dual_tri in eachindex(dual_edges_1)
primal_tri = dual_v_0[dual_edges_1[dual_tri]] - shift
row_idx = row_idx_in_col[primal_tri]
@inbounds for primal_tri in triangles(sd)
for dual_tri_idx in 1:6
dual_tri_real = primal_tri + (dual_tri_idx - 1) * shift

primal_vertices[row_idx, primal_tri] = dual_v_1[dual_edges_2[dual_tri]]
coeffs[row_idx, primal_tri] = dv[dual_tri] / vols[primal_tri]
primal_vertices[dual_tri_idx, primal_tri] = sd[sd[dual_tri_real, :D_∂e2], :D_∂v1]
coeffs[dual_tri_idx, primal_tri] = sd[dual_tri_real, :dual_area] / sd[primal_tri, :area]
end
end

row_idx_in_col[primal_tri] += 1
end

return (primal_vertices, coeffs, simples)
return (primal_vertices, coeffs, triangles(sd))
end

""" dec_c_wedge_product!(::Type{Tuple{0,2}}, wedge_terms, f, α, val_pack)
Computes the wedge product between a 0 and 2-form.
Use the precomputational "p" varient for the wedge_terms parameter.
Use the precomputational "p" varient for the wedge_terms parameter.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
Expand All @@ -125,24 +112,21 @@ end
""" dec_p_wedge_product(::Type{Tuple{1,1}}, sd::EmbeddedDeltaDualComplex2D{Bool, float_type, _p} where _p) where float_type
Precomputes values for the wedge product between a 1 and 1-form.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
The values are to be fed into the wedge_terms parameter for the computational "c" varient.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
function dec_p_wedge_product(::Type{Tuple{1,1}}, sd::EmbeddedDeltaDualComplex2D{Bool, float_type, _p} where _p) where float_type
simples = simplices(2, sd)

areas = @view sd[:area]
d_areas = @view sd[:dual_area]
simples =

coeffs = Array{float_type}(undef, 3, ntriangles(sd))

shift = ntriangles(sd)
@inbounds for i in 1:ntriangles(sd)
area = 2 * areas[i]
coeffs[1, i] = (d_areas[i] + d_areas[i+shift]) / area
coeffs[2, i] = (d_areas[i+2*shift] + d_areas[i+3*shift]) / area
coeffs[3, i] = (d_areas[i+4*shift] + d_areas[i+5*shift]) / area
area = 2 * sd[i, :area]
coeffs[1, i] = (sd[i, :dual_area] + sd[i+shift, :dual_area]) / area
coeffs[2, i] = (sd[i+2*shift, :dual_area] + sd[i+3*shift, :dual_area]) / area
coeffs[3, i] = (sd[i+4*shift, :dual_area] + sd[i+5*shift, :dual_area]) / area
end
# XXX: This is assuming that meshes don't have too many entries
# TODO: This type should be settable by the user and default set to Int32
Expand All @@ -152,13 +136,13 @@ function dec_p_wedge_product(::Type{Tuple{1,1}}, sd::EmbeddedDeltaDualComplex2D{
e[2, :] = (2, 1, sd)
e[3, :] = (2, 2, sd)

return (e, coeffs, simples)
return (e, coeffs, triangles(sd))
end

""" dec_c_wedge_product!(::Type{Tuple{1,1}}, wedge_terms, f, α, val_pack)
Computes the wedge product between a 1 and 1-form.
Use the precomputational "p" varient for the wedge_terms parameter.
Use the precomputational "p" varient for the wedge_terms parameter.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
Expand All @@ -183,7 +167,7 @@ end
""" dec_c_wedge_product(::Type{Tuple{m,n}}, α, β, val_pack) where {m,n}
Computes the wedge product between two forms.
Use the precomputational "p" varient for the wedge_terms parameter.
Use the precomputational "p" varient for the wedge_terms parameter.
This relies on the assumption of a well ordering of the dual space simplices.
Do NOT modify the mesh once it's dual mesh has been computed else this method may not function properly.
"""
Expand Down Expand Up @@ -369,12 +353,22 @@ weddge (without explicitly dividing by 2.)


# Boundary Operators
"""
dec_boundary(n::Int, sd::HasDeltaSet)
Gives the boundary operator (as a matrix) for `(n+1)`-simplices to `(n)`-simplices
"""
dec_boundary(n::Int, sd::HasDeltaSet) = sparse(dec_p_boundary(Val{n}, sd)...)

dec_p_boundary(::Type{Val{k}}, sd::HasDeltaSet; negate::Bool=false) where {k} =
dec_p_derivbound(Val{k - 1}, sd, transpose=true, negate=negate)

# Dual Derivative Operators
"""
dec_dual_derivative(n::Int, sd::HasDeltaSet)
Gives the dual exterior derivative (as a matrix) between dual `n`-simplices and dual `(n+1)`-simplices
"""
dec_dual_derivative(n::Int, sd::HasDeltaSet) = sparse(dec_p_dual_derivative(Val{n}, sd)...)

dec_p_dual_derivative(::Type{Val{0}}, sd::HasDeltaSet1D) =
Expand All @@ -387,6 +381,11 @@ dec_p_dual_derivative(::Type{Val{1}}, sd::HasDeltaSet2D) =
dec_p_boundary(Val{1}, sd, negate=true)

# Exterior Derivative Operators
"""
dec_differential(n::Int, sd::HasDeltaSet)
Gives the exterior derivative (as a matrix) between `n`-simplices and `(n+1)`-simplices
"""
dec_differential(n::Int, sd::HasDeltaSet) = sparse(dec_p_derivbound(Val{n}, sd)...)

function dec_p_derivbound(::Type{Val{0}}, sd::HasDeltaSet; transpose::Bool=false, negate::Bool=false)
Expand All @@ -404,17 +403,14 @@ function dec_p_derivbound(::Type{Val{0}}, sd::HasDeltaSet; transpose::Bool=false
e_orient[i] = (e_orient[i] == 1 ? 1 : -1)
end

v0_list = @view sd[:∂v0]
v1_list = @view sd[:∂v1]

for i in edges(sd)
j = 2 * i - 1

I[j] = i
I[j+1] = i

J[j] = v0_list[i]
J[j+1] = v1_list[i]
J[j] = sd[i, :∂v0]
J[j+1] = sd[i, :∂v1]

sign_term = e_orient[i]

Expand Down Expand Up @@ -449,10 +445,6 @@ function dec_p_derivbound(::Type{Val{1}}, sd::HasDeltaSet; transpose::Bool=false
e_orient[i] = (e_orient[i] == 1 ? 1 : -1)
end

e0_list = @view sd[:∂e0]
e1_list = @view sd[:∂e1]
e2_list = @view sd[:∂e2]

for i in triangles(sd)
j = 3 * i - 2

Expand All @@ -462,13 +454,13 @@ function dec_p_derivbound(::Type{Val{1}}, sd::HasDeltaSet; transpose::Bool=false

tri_sign = tri_sign_list[i]

J[j] = e0_list[i]
J[j+1] = e1_list[i]
J[j+2] = e2_list[i]
J[j] = sd[i, :∂e0]
J[j+1] = sd[i, :∂e1]
J[j+2] = sd[i, :∂e2]

edge_sign_0 = e_orient[e0_list[i]]
edge_sign_1 = e_orient[e1_list[i]]
edge_sign_2 = e_orient[e2_list[i]]
edge_sign_0 = e_orient[sd[i, :∂e0]]
edge_sign_1 = e_orient[sd[i, :∂e1]]
edge_sign_2 = e_orient[sd[i, :∂e2]]

V[j] = edge_sign_0 * tri_sign
V[j+1] = -1 * edge_sign_1 * tri_sign
Expand All @@ -485,20 +477,18 @@ function dec_p_derivbound(::Type{Val{1}}, sd::HasDeltaSet; transpose::Bool=false
(I, J, V)
end

# Diagonal Hodges
# Diagonal Hodges

function dec_p_hodge_diag(::Type{Val{0}}, sd::EmbeddedDeltaDualComplex1D{Bool, float_type, _p} where _p) where float_type
num_v_sd = nv(sd)

hodge_diag_0 = zeros(float_type, num_v_sd)

v1_list = @view sd[:D_∂v1]
dual_lengths = @view sd[:dual_length]

for (d_edge_idx, v1) in enumerate(v1_list)
if (1 <= v1 <= num_v_sd)
hodge_diag_0[v1] += dual_lengths[d_edge_idx]
end
for d_edge_idx in parts(sd, :DualE)
v1 = sd[d_edge_idx, :D_∂v1]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Checking that this is the dual vertex that is at the center of a primal vertex may just "fall out" of using our accessors in a certain order. So the following reliance on checking if it is in 1:nv(sd) may be unnecessary.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Further, this may be faster using @inbounds

if (1 <= v1 <= num_v_sd)
hodge_diag_0[v1] += sd[d_edge_idx, :dual_length]
end
end
return hodge_diag_0
end
Expand All @@ -512,13 +502,9 @@ end
function dec_p_hodge_diag(::Type{Val{0}}, sd::EmbeddedDeltaDualComplex2D{Bool, float_type, _p} where _p) where float_type
hodge_diag_0 = zeros(float_type, nv(sd))

dual_edges_1 = @view sd[:D_∂e1]
dual_v_1 = @view sd[:D_∂v1]
dual_areas = @view sd[:dual_area]

for (dual_tri, dual_edges) in enumerate(dual_edges_1)
v = dual_v_1[dual_edges]
hodge_diag_0[v] += dual_areas[dual_tri]
for dual_tri in parts(sd, :DualTri)
v = sd[sd[dual_tri, :D_∂e1], :D_∂v1]
hodge_diag_0[v] += sd[dual_tri, :dual_area]
end
return hodge_diag_0
end
Expand All @@ -529,15 +515,11 @@ function dec_p_hodge_diag(::Type{Val{1}}, sd::EmbeddedDeltaDualComplex2D{Bool, f

hodge_diag_1 = zeros(float_type, num_e_sd)

v1_list = @view sd[:D_∂v1]
dual_lengths = @view sd[:dual_length]
lengths = @view sd[:length]

for (d_edge_idx, v1) in enumerate(v1_list)
v1_shift = v1 - num_v_sd
if (1 <= v1_shift <= num_e_sd)
hodge_diag_1[v1_shift] += dual_lengths[d_edge_idx] / lengths[v1_shift]
end
for d_edge_idx in parts(sd, :DualE)
v1_shift = sd[d_edge_idx, :D_∂v1] - num_v_sd
if (1 <= v1_shift <= num_e_sd)
hodge_diag_1[v1_shift] += sd[d_edge_idx, :dual_length] / sd[v1_shift, :length]
end
end
return hodge_diag_1
end
Expand All @@ -547,14 +529,19 @@ function dec_p_hodge_diag(::Type{Val{2}}, sd::EmbeddedDeltaDualComplex2D{Bool, f
return 1 ./ tri_areas
end

"""
dec_hodge_star(n::Int, sd::HasDeltaSet; hodge=GeometricHodge())
Gives the hodge matrix between `n`-simplices and dual 'n'-simplices.
"""
dec_hodge_star(n::Int, sd::HasDeltaSet; hodge=GeometricHodge()) = dec_hodge_star(Val{n}, sd, hodge)
dec_hodge_star(n::Int, sd::HasDeltaSet, ::DiagonalHodge) = dec_hodge_star(Val{n}, sd, DiagonalHodge())
dec_hodge_star(n::Int, sd::HasDeltaSet, ::GeometricHodge) = dec_hodge_star(Val{n}, sd, GeometricHodge())

dec_hodge_star(::Type{Val{k}}, sd::HasDeltaSet, ::DiagonalHodge) where {k} =
Diagonal(dec_p_hodge_diag(Val{k}, sd))

# These are Geometric Hodges
# These are Geometric Hodges
# TODO: Still need better implementation for Hodge 1 in 2D
dec_hodge_star(::Type{Val{0}}, sd::EmbeddedDeltaDualComplex1D, ::GeometricHodge) =
dec_hodge_star(Val{0}, sd, DiagonalHodge())
Expand All @@ -574,7 +561,7 @@ crossdot(v1, v2) = begin
end

function dec_hodge_star(::Type{Val{1}}, sd::EmbeddedDeltaDualComplex2D{Bool, float_type, point_type}, ::GeometricHodge) where {float_type, point_type}

I = Vector{Int32}(undef, ntriangles(sd) * 9)
J = Vector{Int32}(undef, ntriangles(sd) * 9)
V = Vector{float_type}(undef, ntriangles(sd) * 9)
Expand All @@ -584,27 +571,18 @@ function dec_hodge_star(::Type{Val{1}}, sd::EmbeddedDeltaDualComplex2D{Bool, flo
tri_edges_2 = @view sd[:∂e1]
tri_edges_3 = @view sd[:∂e0]
tri_edges = [tri_edges_1, tri_edges_2, tri_edges_3]

edge_centers = @view sd[:edge_center]
tri_centers = @view sd[:tri_center]
tgts = @view sd[:∂v0]
srcs = @view sd[:∂v1]

# Regular points are contained in first nv(sd) spots
# TODO: Decide if to use view or not, using a view means less memory but slightly slower
dual_points::Vector{point_type} = sd[:dual_point]

evt = Vector{point_type}(undef, 3)
dvt = Vector{point_type}(undef, 3)
evt = MVector{3, point_type}(undef)
dvt = MVector{3, point_type}(undef)

idx = 0

@inbounds for t in triangles(sd)
dual_point_tct = dual_points[tri_centers[t]]
dual_point_tct = sd[sd[t, :tri_center], :dual_point]
for i in 1:3
tri_edge = tri_edges[i][t]
evt[i] = dual_points[tgts[tri_edge]] - dual_points[srcs[tri_edge]]
dvt[i] = dual_point_tct - dual_points[edge_centers[tri_edge]]
evt[i] = sd[sd[tri_edge, :∂v0], :dual_point] - sd[sd[tri_edge, :∂v1], :dual_point]
dvt[i] = dual_point_tct - sd[sd[tri_edge, :edge_center], :dual_point]
end
dvt[2] *= -1

Expand All @@ -624,7 +602,7 @@ function dec_hodge_star(::Type{Val{1}}, sd::EmbeddedDeltaDualComplex2D{Bool, flo

for p ((1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1))
diag_dot = dot(evt[p[1]], dvt[p[1]]) / dot(evt[p[1]], evt[p[1]])
val = diag_dot * dot(evt[p[1]], evt[p[3]])
val = diag_dot * dot(evt[p[1]], evt[p[3]])
if val != 0.0
idx += 1
I[idx] = tri_edges[p[1]][t]
Expand All @@ -641,6 +619,11 @@ function dec_hodge_star(::Type{Val{1}}, sd::EmbeddedDeltaDualComplex2D{Bool, flo
sparse(view_I, view_J, view_V)
end

"""
dec_inv_hodge_star(n::Int, sd::HasDeltaSet; hodge=GeometricHodge())
Gives the inverse hodge matrix between dual `n`-simplices and 'n'-simplices.
"""
dec_inv_hodge_star(n::Int, sd::HasDeltaSet; hodge=GeometricHodge()) = dec_inv_hodge_star(Val{n}, sd, hodge)
dec_inv_hodge_star(n::Int, sd::HasDeltaSet, ::DiagonalHodge) = dec_inv_hodge_star(Val{n}, sd, DiagonalHodge())
dec_inv_hodge_star(n::Int, sd::HasDeltaSet, ::GeometricHodge) = dec_inv_hodge_star(Val{n}, sd, GeometricHodge())
Expand Down
Loading