Skip to content

Commit

Permalink
3D Differential Operators (#60)
Browse files Browse the repository at this point in the history
  • Loading branch information
lukem12345 authored and KevinDCarlson committed Oct 24, 2024
1 parent cff41f9 commit becd0e3
Show file tree
Hide file tree
Showing 6 changed files with 167 additions and 65 deletions.
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
Catlab = "134e5e36-593f-5add-ad60-77f754baafbe"
DataMigrations = "0c4ad18d-0c49-4bc2-90d5-5bca8f00d6ae"
Debugger = "31a5f54b-26ea-5ae9-a837-f05ce5417438"
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
GeometryBasics = "5c1252a2-5f33-56bf-86c9-59e7332b4326"
IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153"
Expand All @@ -24,6 +25,7 @@ LinearMaps = "7a12625a-238d-50fd-b39a-03d52299707e"
Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
MeshIO = "7269a6da-0436-5bbc-96c2-40638cbb6118"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
RowEchelon = "af85af4c-bcd5-5d23-b03a-a909639aa875"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Expand Down
5 changes: 5 additions & 0 deletions src/DiscreteExteriorCalculus.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1509,6 +1509,11 @@ s = EmbeddedDeltaSet2D{Bool,SVector{Float64,Float64}}()
dualize(s)::EmbeddedDeltaDualComplex2D{Bool,Float64,SVector{Float64,Float64}}
"""
dualize(d::HasDeltaSet) = dual_type(d)(d)
function dualize(d::HasDeltaSet,center::SimplexCenter)
dd = dualize(d)
subdivide_duals!(dd,center)
dd
end

"""
Get the acset schema, as a Presentation, of a HasDeltaSet.
Expand Down
4 changes: 2 additions & 2 deletions src/GeometricMaps.jl
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,9 @@ function vertices(d::DeltaSet, p::Point)
end

function check_simplex_exists(
codom::SimplicialComplex{D'}
codom::SimplicialComplex{D}
points::Vector{Point}
) where {D, D'}
) where {D}
verts = vcat([vertices(codom.delta_set, p) for p in points])
sort!(verts)
unique!(verts)
Expand Down
35 changes: 26 additions & 9 deletions src/SimplicialComplexes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
The category of simplicial complexes and Kleisli maps for the convex space monad.
"""
module SimplicialComplexes
export SimplicialComplex, VertexList, has_simplex, GeometricPoint, has_point, has_span, GeometricMap, nv, as_matrix, compose, id, cocenter, primal_vertices, subdivision_maps
export SimplicialComplex, VertexList, has_simplex, GeometricPoint, has_point, has_span, GeometricMap, nv, as_matrix, compose, id, cocenter, primal_vertices, subdivision_map
using ..Tries
using ..SimplicialSets, ..DiscreteExteriorCalculus
import ACSets: incident, subpart
Expand Down Expand Up @@ -70,6 +70,15 @@ struct SimplicialComplex{D}
new{D}(d, t)
end

Base.show(io::IO,sc::SimplicialComplex) = print(io,"SimplicialComplex($(sc.cache))")
Base.show(io::IO,::MIME"text/plain",sc::SimplicialComplex) =
print(io,
"""
Simplicial complex with $(nv(sc)) vertices.
Edges: $(sort(filter(x->length(x)==2,keys(sc.cache)))).
Triangles: $(sort(filter(x->length(x)==3,keys(sc.cache)))).
"""
)
#XX Make this work for oriented types, maybe error for embedded types
"""
Build a simplicial complex without a pre-existing delta-set.
Expand Down Expand Up @@ -247,6 +256,18 @@ end
GeometricMap(sc::SimplicialComplex{D},sc′::SimplicialComplex{D′},points::AbstractMatrix;checked::Bool=true) where {D,D′} = GeometricMap(sc,sc′,GeometricPoint.(eachcol(points)),checked=checked)
dom(f::GeometricMap) = f.dom
codom(f::GeometricMap) = f.cod
Base.show(io::IO,f::GeometricMap) =
print(io,"GeometricMap(\n $(f.dom),\n $(f.cod),\n $(as_matrix(f)))")
Base.show(io::IO,::MIME"text/plain",f::GeometricMap) =
print(io,
"""
GeometricMap with
Domain: $(sprint((io,x)->show(io,MIME"text/plain"(),x),f.dom))
Codomain: $(sprint((io,x)->show(io,MIME"text/plain"(),x),f.cod))
Values: $(sprint((io,x)->show(io,MIME"text/plain"(),x),as_matrix(f)))
""")


#want f(n) to give values[n]?
"""
Returns the data-centric view of f as a matrix whose i-th column
Expand All @@ -268,14 +289,15 @@ function GeometricMap(sc::SimplicialComplex,::Barycenter)
end
#accessors for the nonzeros in a column of the matrix

#XX: make the restriction map smoother
"""
The geometric maps from a deltaset's subdivision to itself and back again.
The geometric map from a deltaset's subdivision to itself.
Warning: the second returned map is not actually a valid geometric map as edges
of the primal delta set will run over multiple edges of the dual. So, careful composing
with it etc.
"""
function subdivision_maps(primal_s::EmbeddedDeltaSet,alg=Barycenter())
function subdivision_map(primal_s::EmbeddedDeltaSet,alg=Barycenter())
prim = SimplicialComplex(primal_s)
s = dualize(primal_s)
subdivide_duals!(s,alg)
Expand All @@ -288,12 +310,7 @@ function subdivision_maps(primal_s::EmbeddedDeltaSet,alg=Barycenter())
mat[v,j] = weights[j]
end
end
a = GeometricMap(dual,prim,mat)
mat′ = zeros(Float64,nv(dual),nv(prim))
for i in 1:nv(prim)
mat′[subpart(s,i,:vertex_center),i] = 1
end
a, GeometricMap(prim,dual,mat′,checked=false)
GeometricMap(dual,prim,mat)
end

function pullback_primal(f::GeometricMap, v::PrimalVectorField{T}) where T
Expand Down
120 changes: 66 additions & 54 deletions test/Operators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,7 @@ using Random
using GeometryBasics: Point2, Point3
using StaticArrays: SVector
using Statistics: mean, var
using IterativeSolvers
using LinearMaps
using CairoMakie

Point2D = Point2{Float64}
Point3D = Point3{Float64}
Expand Down Expand Up @@ -74,7 +73,7 @@ flat_meshes = [tri_345()[2], tri_345_false()[2], right_scalene_unit_hypot()[2],
@test all(dec_differential(i, sd) .== d(i, sd))
end
end

t
for i in 0:1
for sd in dual_meshes_2D
@test all(dec_differential(i, sd) .== d(i, sd))
Expand Down Expand Up @@ -359,31 +358,32 @@ function euler_equation_test(X♯, sd)
interior_tris = setdiff(triangles(sd), boundary_inds(Val{2}, sd))

# Allocate the cached operators.
d0 = dec_dual_derivative(0, sd)
d1 = dec_differential(1, sd);
s1 = dec_hodge_star(1, sd);
s2 = dec_hodge_star(2, sd);
ι1 = interior_product_dd(Tuple{1,1}, sd)
ι2 = interior_product_dd(Tuple{1,2}, sd)
ℒ1 = ℒ_dd(Tuple{1,1}, sd)
d0 = dec_dual_derivative(0, sd) #E x T matrix
d1 = dec_differential(1, sd);#E x T matrix
s1 = dec_hodge_star(1, sd); #E x E matrix
s2 = dec_hodge_star(2, sd); #T x T matrix
ι1 = interior_product_dd(Tuple{1,1}, sd) #function from pairs of E-vectors to T-vector
ι2 = interior_product_dd(Tuple{1,2}, sd) #function
ℒ1 = ℒ_dd(Tuple{1,1}, sd) #function

# This is a uniform, constant flow.
u = hodge_star(1,sd) * eval_constant_primal_form(sd, X♯)
u = s1 * eval_constant_primal_form(sd, X♯) #multiply s1 by the form that roughly dots each edge with X♯ (?)

# Recall Euler's Equation:
# ∂ₜu = -ℒᵤu + 0.5dιᵤu - 1/ρdp + b.
# We expect for a uniform flow then that ∂ₜu = 0.
# We will not explicitly set boundary conditions for this test.

# not clear why this function is chosen
mag(x) = (sqrt abs).(ι1(x,x))

# Test that the advection term is 0.
# Test that the advection term -ℒᵤu + 0.5dιᵤu is 0.
selfadv = ℒ1(u,u) - 0.5*d0*ι1(u,u)
mag_selfadv = mag(selfadv)[interior_tris]

# Solve for pressure
div(x) = s2 * d1 * (s1 \ x);
solveΔ(x) = float.(d0) \ (s1 * (float.(d1) \ (s2 \ x)))
# Solve for pressure using the Poisson equation
div(x) = s2 * d1 * (s1 \ x); #basically divergence
solveΔ(x) = float.(d0) \ (s1 * (float.(d1) \ (s2 \ x))) #hodge-star x to a 2-form, then invert d1, star again, then invert d0, solves laplace equation

p = (solveΔ div)(selfadv)
dp = d0*p
Expand All @@ -396,45 +396,57 @@ function euler_equation_test(X♯, sd)
mag_selfadv, mag_dp, mag_∂ₜu
end

@testset "Dual-Dual Interior Product and Lie Derivative" begin
X♯ = SVector{3,Float64}(1/√2,1/√2,0)
mag_selfadv, mag_dp, mag_∂ₜu = euler_equation_test(X♯, rect)
# Note that "error" accumulates in the first two layers around ∂Ω.
# That is not really error, but rather the effect of boundary conditions.
#mag(x) = (sqrt ∘ abs).(ι1(x,x))
#plot_dual0form(sd, mag(selfadv))
#plot_dual0form(sd, mag(dp))
#plot_dual0form(sd, mag(∂ₜu))
@test .75 < (count(mag_selfadv .< 1e-8) / length(mag_selfadv))
@test .80 < (count(mag_dp .< 1e-2) / length(mag_dp))
@test .75 < (count(mag_∂ₜu .< 1e-2) / length(mag_∂ₜu))

# This smaller mesh is proportionally more affected by boundary conditions.
X♯ = SVector{3,Float64}(1/√2,1/√2,0)
mag_selfadv, mag_dp, mag_∂ₜu = euler_equation_test(X♯, tg)
@test .64 < (count(mag_selfadv .< 1e-2) / length(mag_selfadv))
@test .64 < (count(mag_dp .< 1e-2) / length(mag_dp))
@test .60 < (count(mag_∂ₜu .< 1e-2) / length(mag_∂ₜu))

X♯ = SVector{3,Float64}(3,3,0)
mag_selfadv, mag_dp, mag_∂ₜu = euler_equation_test(X♯, tg)
@test .60 < (count(mag_selfadv .< 1e-1) / length(mag_selfadv))
@test .60 < (count(mag_dp .< 1e-1) / length(mag_dp))
@test .60 < (count(mag_∂ₜu .< 1e-1) / length(mag_∂ₜu))

# u := ⋆xdx
# ιᵤu = x²
sd = rect;
f = map(point(sd)) do p
p[1]
end
dx = eval_constant_primal_form(sd, SVector{3,Float64}(1,0,0))
u = hodge_star(1,sd) * dec_wedge_product(Tuple{0,1}, sd)(f, dx)
ι1 = interior_product_dd(Tuple{1,1}, sd)
interior_tris = setdiff(triangles(sd), boundary_inds(Val{2}, sd))
@test all(<(8e-3), (ι1(u,u) .- map(sd[sd[:tri_center], :dual_point]) do (x,_,_)
x*x
end)[interior_tris])

X♯ = SVector{3,Float64}(1 / 2, 1 / 2, 0)
new_grid′ = loadmesh(Icosphere(4))
new_grid = EmbeddedDeltaDualComplex2D{Bool,Float64,Point3D}(new_grid′)
subdivide_duals!(new_grid, Barycenter())
mag_selfadv, mag_dp, mag_∂ₜu = euler_equation_test(X♯, rect,false)
nmag_selfadv, nmag_dp, nmag_∂ₜu = euler_equation_test(X♯, new_grid,false)

plot_dual0form(new_grid, nmag_selfadv)
plot_dual0form(new_grid, nmag_dp)
plot_dual0form(new_grid, nmag_∂ₜu)

# Note that "error" accumulates in the first two layers around ∂Ω.
# That is not really error, but rather the effect of boundary conditions.
#mag(x) = (sqrt ∘ abs).(ι1(x,x))

mag_selfadv = map(mag_selfadv) do x x > 0.01 ? 0 : x end

plot_dual0form(rect, mag_selfadv)
plot_dual0form(rect, mag_dp)
plot_dual0form(rect, mag_∂ₜu)
@test 0.75 < (count(mag_selfadv .< 1e-8) / length(mag_selfadv))
@test 0.80 < (count(mag_dp .< 1e-2) / length(mag_dp))
@test 0.75 < (count(mag_∂ₜu .< 1e-2) / length(mag_∂ₜu))

# This smaller mesh is proportionally more affected by boundary conditions.
X♯ = SVector{3,Float64}(1 / 2, 1 / 2, 0)
mag_selfadv, mag_dp, mag_∂ₜu = euler_equation_test(X♯, tg)
@test 0.64 < (count(mag_selfadv .< 1e-2) / length(mag_selfadv))
@test 0.64 < (count(mag_dp .< 1e-2) / length(mag_dp))
@test 0.60 < (count(mag_∂ₜu .< 1e-2) / length(mag_∂ₜu))

X♯ = SVector{3,Float64}(3, 3, 0)
mag_selfadv, mag_dp, mag_∂ₜu = euler_equation_test(X♯, tg)
@test 0.60 < (count(mag_selfadv .< 1e-1) / length(mag_selfadv))
@test 0.60 < (count(mag_dp .< 1e-1) / length(mag_dp))
@test 0.60 < (count(mag_∂ₜu .< 1e-1) / length(mag_∂ₜu))

# u := ⋆xdx
# ιᵤu = x²
sd = rect
f = map(point(sd)) do p
p[1]
end
dx = eval_constant_primal_form(sd, SVector{3,Float64}(1, 0, 0))
u = hodge_star(1, sd) * dec_wedge_product(Tuple{0,1}, sd)(f, dx)
ι1 = interior_product_dd(Tuple{1,1}, sd)
interior_tris = setdiff(triangles(sd), boundary_inds(Val{2}, sd))
@test all(<(8e-3), (ι1(u, u).-map(sd[sd[:tri_center], :dual_point]) do (x, _, _)
x * x
end)[interior_tris])


end
66 changes: 66 additions & 0 deletions test/SimplicialComplexes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@ using Test
using CombinatorialSpaces
using Catlab:@acset
using LinearAlgebra: I
using GeometryBasics: Point2, Point3
Point2D = Point2{Float64}

# Triangulated commutative square.
ss = DeltaSet2D()
Expand Down Expand Up @@ -83,4 +85,68 @@ function heat_equation_multiscale(primal_s::HasDeltaSet, laplacian_builder::Func
transpose(u_fine)
end

#XX might be handy to make this an iterator
"""
A weighted Jacobi iteration iterating toward a solution of
Au=b.
For Poisson's equation on a grid, it's known that ω=2/3 is optimal.
Experimentally, ω around .85 is best for a subdivided 45-45-90 triangle.
In general this will converge for all u₀ with ω=1 if A is strictly
diagonally dominant.
I'm not sure about convergence for general ω.
See Golub Van Loan 11.2 and 11.6.2.
"""
function WJ(A,b,ω)
D = diagm(diag(A))
c = ω * (D \ b)
G = (1-ω)*I-ω * (D\(A-D))
G,c
end
spectral_radius(A) = maximum(abs.(eigvals(A)))
sub_spectral_radius(A) = sub_max(abs.(eigvals(A)))
function sub_max(v)
length(v)>1 || error("don't")
a,b = sort([v[1],v[2]])
for i in v[3:end]
if i > b
a,b = b,i
elseif i > a
a = i
end
end
a
end
function it(G,c,u₀,n)
u = u₀
for i in 1:n u = G*u+c end
u
end
u₀ = zeros(7)
A = rand(7,7)+diagm(fill(10.0,7))
b = ones(7)
G,c = WJ(A,b,1)
@test norm(A*it(G,c,u₀,25)- b)<10^-10

function multigrid_vcycle(u,b,primal_s,depth)
mats = multigrid_setup(primal_s,depth)
end
function multigrid_setup(primal_s,depth,alg=Barycenter())
prim = primal_s
map(1:depth+1) do i
duco = dualize(prim,alg)
dual = extract_dual(duco)
mat = zeros(Float64,nv(prim),nv(dual))
pvs = map(i->primal_vertices(duco,i),1:nv(dual))
weights = 1 ./(length.(pvs))
for j in 1:nv(dual)
for v in pvs[j]
mat[v,j] = weights[j]
end
end
L,f=∇²(0,duco),GeometricMap(SimplicialComplex(dual),SimplicialComplex(prim),mat)
prim = dual
(L=L,f=f)
end
end

end

0 comments on commit becd0e3

Please sign in to comment.