Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Batched min p and fix spec gen sampling #1222

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 9 additions & 11 deletions llms/mlx_lm/sample_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,11 +147,11 @@ def min_p_sampling(
logprobs = logprobs * (1 / temperature)

# Indices sorted in decreasing order
sorted_indices = mx.argsort(-logprobs).squeeze(0)
sorted_logprobs = logprobs[..., sorted_indices]
sorted_indices = mx.argsort(-logprobs, axis=-1)
sorted_logprobs = mx.take_along_axis(logprobs, sorted_indices, axis=-1)

# Top probability
top_logprobs = logprobs[..., sorted_indices[0]]
top_logprobs = sorted_logprobs[:, 0:1]

# Calculate the min_p threshold
scaled_min_p = top_logprobs + math.log(min_p)
Expand All @@ -163,9 +163,9 @@ def min_p_sampling(
# Create pool of tokens with probability less than scaled min_p
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)

# Return sampled token
sorted_token = mx.random.categorical(selected_logprobs)
return sorted_indices[sorted_token]
# Return sampled tokens
sorted_tokens = mx.random.categorical(selected_logprobs, axis=-1)[:, None]
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)


@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
Expand All @@ -185,7 +185,7 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr

# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=-1)
sorted_probs = probs[..., sorted_indices.squeeze(0)]
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=-1)

cumulative_probs = mx.cumsum(sorted_probs, axis=-1)

Expand All @@ -196,10 +196,8 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
0,
)

sorted_token = mx.random.categorical(mx.log(top_probs))
token = sorted_indices.squeeze(0)[sorted_token]

return token
sorted_tokens = mx.random.categorical(mx.log(top_probs), axis=-1)[:, None]
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)


@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
Expand Down
5 changes: 3 additions & 2 deletions llms/mlx_lm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -398,8 +398,9 @@ def _step(model, cache, y, n_predict=1):
quantize_cache_fn(cache)

logprobs = logits - mx.logsumexp(logits, keepdims=True)
y = sampler(logprobs).squeeze(0)
return y, logprobs.squeeze(0)
logprobs = logprobs.squeeze(0)
y = sampler(logprobs)
return y, logprobs

def _prefill(model, cache, y):
while y.size > prefill_step_size:
Expand Down
12 changes: 12 additions & 0 deletions llms/tests/test_sample_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,12 @@ def test_top_p_sampling(self):
token = top_p_sampling(logits, 0.95, temperature).item()
self.assertTrue(token in (1, 2, 3))

# Batch mode works
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
logits = mx.log(probs)
tokens = top_p_sampling(logits, 0.5, temperature)
self.assertEqual(tokens.tolist(), [0, 1])

def test_min_p_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
Expand All @@ -42,6 +48,12 @@ def test_min_p_sampling(self):
token = min_p_sampling(logits, 0.05)
self.assertTrue(token in (0, 3))

# Batch mode works
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
logits = mx.log(probs)
tokens = min_p_sampling(logits, 0.7)
self.assertEqual(tokens.tolist(), [0, 1])

def test_top_k_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
Expand Down